Melhoria De Desempenho De Motores De Relutância Variável Via Algoritmo De Enxame De Partículas

Authors

  • Filipe Pinarello Scalcon Universidade Federal de Santa Maria (UFSM), Santa Maria – RS, Brasil
  • Thieli Smidt Gabbi Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre – RS, Brasil
  • Rodrigo Padilha Vieira Universidade Federal de Santa Maria (UFSM), Santa Maria – RS, Brasil
  • Hilton Abílio Gründling Universidade Federal de Santa Maria (UFSM), Santa Maria – RS, Brasil

DOI:

https://doi.org/10.18618/REP.2020.4.0038

Keywords:

Eficiência Energética

Abstract

Este trabalho apresenta como contribuição um procedimento para otimização dos ângulos de disparo de um motor de relutância variável via algoritmo de enxame de partículas. Com isso, objetiva-se garantir um desempenho com equilíbrio entre reduzida ondulação de torque e elevada eficiência energética. A técnica é destinada a motores de relutância variável operando na região de controle de corrente, abaixo da velocidade base. O procedimento proposto é comparado com uma abordagem tradicional, de varredura de parâmetros, a fim de mostrar a significativa diminuição do esforço computacional. Resultados de simulação e experimentais são apresentados, mostrando que um balanço entre eficiência e ondulações de torque é alcançado.

Downloads

Download data is not yet available.

Author Biographies

Filipe Pinarello Scalcon, Universidade Federal de Santa Maria (UFSM), Santa Maria – RS, Brasil

, nasceu em Santa Maria, RS, Brasil em 1995. Possui graduação (2017) e mestrado (2019) em Engenharia Elétrica pela Universidade Federal de Santa Maria (UFSM). Atualmente é aluno de doutorado na mesma instituição, onde desenvolve seus trabalhos no Grupo de Eletrônica de Potência e Controle (GEPOC). Seus interesses de pesquisa incluem controle de máquinas elétricas, máquinas de relutância e controle robusto.

Thieli Smidt Gabbi, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre – RS, Brasil

, nasceu em Santa Maria, RS, Brasil em 1989. Recebeu o título de Engenheira Eletricista pela Universidade Federal de Santa Maria (UFSM) em 2013, e os títulos de Mestra e Doutora em Engenharia Elétrica pelo Programa de Pós-Graduação em Engenharia Elétrica (CAPES 6) da UFSM, em 2015 e 2019, respectivamente. Atualmente é Professora Adjunta do Departamento de Engenharia Elétrica da Universidade Federal do Rio Grande do Sul (UFRGS). Suas áreas de pesquisa incluem controle de sistemas e observação de estados, acionamento de máquinas elétricas e eletrônica de potência.

Rodrigo Padilha Vieira, Universidade Federal de Santa Maria (UFSM), Santa Maria – RS, Brasil

, nasceu em Cruz Alta, RS, Brasil, em 1983, é engenheiro eletricista pela Unijuí (2007), mestre (2008) e doutor (2012) em engenharia elétrica pela Universidade Federal de Santa Maria (UFSM), Santa Maria, Brasil. Atualmente é Professor Adjunto na UFSM e pesquisador junto ao Grupo de Eletrônica de Potência e Controle (GEPOC). Seus temas de pesquisa incluem máquinas elétricas, técnicas de controle por modos deslizantes, observadores por modos deslizantes e técnicas de controle aplicadas a conversores estáticos.

Hilton Abílio Gründling, Universidade Federal de Santa Maria (UFSM), Santa Maria – RS, Brasil

, nasceu em Santa Maria, RS, Brasil, em 1954. Recebeu o título de engenheiro eletricista pela Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brasil, in 1977, e o título de mestre pela Universidade Federal de Santa Catarina, Brasil, em 1980. É doutor em engenharia elétrica pelo Instituto Tecnológico de Aeronáutica, São Paulo, Brasil, in 1995. Desde 1980, é professor da Universidade Federal de Santa Maria, Rio Grande do Sul, Brasil. Suas áreas de pesquisa incluem controle adaptativo, controle discreto, e aplicações em sistemas de controle.

References

B. Bilgin, B. Howey, A. D. Callegaro, J. Liang,M. Kordic, J. Taylor, A. Emadi, "Making the Casefor Switched Reluctance Motors for Propulsion Applications", IEEE Transactions on Vehicular Technology, vol. 69, no. 7, pp. 7172-7186, July 2020.https://doi.org/10.1109/TVT.2020.2993725 DOI: https://doi.org/10.1109/TVT.2020.2993725

M. Krishnamurthy, C. S. Edrington, A. Emadi,P. Asadi, M. Ehsani, B. Fahimi, "Making the case for applications of switched reluctance motor technology in automotive products", IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 659-675, May 2006.https://doi.org/10.1109/TPEL.2006.872371 DOI: https://doi.org/10.1109/TPEL.2006.872371

I. Boldea, L. N. Tutelea, L. Parsa, D. Dorrell, “Automotive Electric Propulsion Systems With Reduced or No Permanent Magnets: An Overview", IEEE Transactions on Industrial Electronics, vol. 61,no. 10, pp. 5696-5711, Oct 2014.https://doi.org/10.1109/TIE.2014.2301754 DOI: https://doi.org/10.1109/TIE.2014.2301754

C. R. D. Osório, F. P. Scalcon, G. G. Koch, V. F.Montagner, R. P. Vieira, H. A. Gründling, "ControleRobusto Aplicado a Geradores de Relutância Variável Conectados à Rede", Eletrônica de Potência,vol. 25, no. 3, pp. 272-282, Set 2020.https://doi.org/10.18618/REP.2020.3.0015 DOI: https://doi.org/10.18618/REP.2020.3.0015

G. Watthewaduge, E. Sayed, A. Emadi, B. Bilgin,"Electromagnetic Modeling Techniques for Switched Reluctance Machines: State-of-the-Art Review", IEEE Open Journal of the Industrial Electronics Society, vol. 1, pp. 218-234, Aug 2020.https://doi.org/10.1109/OJIES.2020.3016242 DOI: https://doi.org/10.1109/OJIES.2020.3016242

A. D. Callegaro, B. Bilgin, A. Emadi, "Radial Force Shaping for Acoustic Noise Reduction in Switched Reluctance Machines", IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 9866-9878, Oct 2019.https://doi.org/10.1109/TPEL.2019.2891050 DOI: https://doi.org/10.1109/TPEL.2019.2891050

A. D. Callegaro, J. Liang, J. W. Jiang, B. Bilgin,A. Emadi, "Radial Force Density Analysis of Switched Reluctance Machines: The Source of Acoustic Noise", IEEE Transactions on Transportation Electrification, vol. 5, no. 1, pp. 93-106, Mar 2019.https://doi.org/10.1109/TTE.2018.2887338 DOI: https://doi.org/10.1109/TTE.2018.2887338

N. K. Sheth, K. R. Rajagopal, "Calculation of the flux-linkage characteristics of a switched reluctance motor by flux tube method", IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 4069-4071, Oct 2005.https://doi.org/10.1109/TMAG.2005.854865 DOI: https://doi.org/10.1109/TMAG.2005.854865

B. Bilgin, A. Emadi, "Electric Motors in Electrified Transportation: A step toward achieving a sustainable and highly efficient transportation system", IEEE Power Electronics Magazine, vol. 1, no. 2, pp. 10-17,July 2014.https://doi.org/10.1109/MPEL.2014.2312275 DOI: https://doi.org/10.1109/MPEL.2014.2312275

H. Li, B. Bilgin, A. Emadi, "An Improved TorqueSharing Function for Torque Ripple Reduction in Switched Reluctance Machines", IEEE Transactions on Power Electronics, vol. 34, no. 2, pp. 1635-1644,Feb 2019.https://doi.org/10.1109/TPEL.2018.2835773 DOI: https://doi.org/10.1109/TPEL.2018.2835773

D. A. Torrey, "Switched reluctance generators and their control", IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp. 3-14, Feb 2002.https://doi.org/10.1109/41.982243 DOI: https://doi.org/10.1109/41.982243

C. Mademlis, I. Kioskeridis, "Performance optimization in switched reluctance motor drives with online commutation angle control", IEEE Transactions on Energy Conversion, vol. 18, no. 3, pp.448-457, Sept 2003.https://doi.org/10.1109/TEC.2003.815854 DOI: https://doi.org/10.1109/TEC.2003.815854

I. Kioskeridis, C. Mademlis, "Maximum efficiency in single-pulse controlled switched reluctance motor drives", IEEE Transactions on Energy Conversion, vol. 20, no. 4, pp. 809-817, Dec 2005.https://doi.org/10.1109/TEC.2005.853738 DOI: https://doi.org/10.1109/TEC.2005.853738

I. Kioskeridis, C. Mademlis, "A Unified Approach for Four-Quadrant Optimal Controlled Switched Reluctance Machine Drives With Smooth Transition Between Control Operations",IEEE Transactions on Power Electronics, vol. 24, no. 1, pp. 301-306, Jan2009.https://doi.org/10.1109/TPEL.2008.2005983 DOI: https://doi.org/10.1109/TPEL.2008.2005983

C. Mademlis, I. Kioskeridis, "Optimizing performance in current-controlled switched reluctance generators", IEEE Transactions on Energy Conversion, vol. 20,no. 3, pp. 556-565, Sept 2005.https://doi.org/10.1109/TEC.2005.852960 DOI: https://doi.org/10.1109/TEC.2005.852960

P. J. d. S. Neto, T. A. d. S. Barros, M. V. de Paula,R. R. de Souza, E. R. Filho, "Design of Computational Experiment for Performance Optimization of a Switched Reluctance Generator in Wind Systems", IEEE Transactions on Energy Conversion, vol. 33,no. 1, pp. 406-419, Mar 2018.https://doi.org/10.1109/TEC.2017.2755590 DOI: https://doi.org/10.1109/TEC.2017.2755590

X. D. Xue, K. W. E. Cheng, J. K. Lin, Z. Zhang,K. F. Luk, T. W. Ng, N. C. Cheung, "Optimal Control Method of Motoring Operation for SRM Drives in Electric Vehicles", IEEE Transactions on Vehicular Technology, vol. 59, no. 3, pp. 1191-1204, Mar 2010.https://doi.org/10.1109/TVT.2010.2041260 DOI: https://doi.org/10.1109/TVT.2010.2041260

V. P. Vujicic, "Minimization of Torque Ripple and Copper Losses in Switched Reluctance Drive", IEEE Transactions on Power Electronics, vol. 27, no. 1, pp.388-399, Jan 2012.https://doi.org/10.1109/TPEL.2011.2158447 DOI: https://doi.org/10.1109/TPEL.2011.2158447

T. A. d. S. Barros, P. S. N. Filho, A. B. Morreira, E. R.Filho, "Algoritmos para otimização do desempenho de geradores a relutância variável aplicados em geração eólica", Eletrônica de Potência, vol. 21, no. 1,pp. 32-41, Fev 2016, doi:10.18618/REP.2016.1.2572.https://doi.org/10.18618/REP.2016.1.2572 DOI: https://doi.org/10.18618/REP.2016.1.2572

S. E. H. Randy L. Haupt,Practical Genetic Algorithms, 2 ed., John Wiley, 2004.

L. C. Borin, C. R. D. Osório, G. G. Koch, T. S.Gabbi, R. C. L. F. Oliveira, V. F. Montagner,"Robust Control Design Procedure Based on Particle Swarm Optimization and Kharitonov's Theorem with an Application for PMSMs", Eletrônica de Potência, vol. 25, no. 2, pp. 219-229, Jun 2020, doi:10.18618/REP.2020.2.0008.https://doi.org/10.18618/REP.2020.2.0008 DOI: https://doi.org/10.18618/REP.2020.2.0008

C. Ma, L. Qu, "Multiobjective Optimization of Switched Reluctance Motors Based on Design of Experiments and Particle Swarm Optimization", IEEE Transactions on Energy Conversion, vol. 30, no. 3, pp.1144-1153, Sept 2015.https://doi.org/10.1109/TEC.2015.2411677 DOI: https://doi.org/10.1109/TEC.2015.2411677

J. Zhang, H. Wang, L. Chen, C. Tan, Y. Wang, "Multi-Objective Optimal Design of Bearingless SwitchedReluctance Motor Based on Multi-Objective Genetic Particle Swarm Optimizer", IEEE Transactions on Magnetics, vol. 54, no. 1, pp. 1-13, Jan 2018.https://doi.org/10.1109/TMAG.2017.2751546 DOI: https://doi.org/10.1109/TMAG.2017.2751546

B. Bilgin, J. Jiang, A. Emadi, Switched Reluctance Motor Drives: Fundamentals to Applications, CRC Press, 2019.https://doi.org/10.1201/9780203729991 DOI: https://doi.org/10.1201/9780203729991

J. Kennedy, R. Eberhart, "Particle swarm optimization",in Proceedings of ICNN'95 -International Conference on Neural Networks, vol. 4, pp. 1942-1948 vol.4, Dec 1995.

S. S. Rao,Engineering Optimization - Theory and Practice, 4 ed., Wiley, 2009.https://doi.org/10.1002/9780470549124 DOI: https://doi.org/10.1002/9780470549124

T. A. D. S. Barros, P. J. D. S. Neto, M. V. D.Paula, A. B. Moreira, P. S. N. Filho, E. R. Filho, “Automatic Characterization System of Switched Reluctance Machines and Nonlinear Modeling by Interpolation Using Smoothing Splines", IEEE Access,vol. 6, pp. 26011-26021, April 2018.https://doi.org/10.1109/ACCESS.2018.2825607 DOI: https://doi.org/10.1109/ACCESS.2018.2825607

F. P. Scalcon, C. R. D. Osório, G. G. Koch, T. S.Gabbi, R. P. Vieira, H. Gründling, R. C. L.Oliveira, V. F. Montagner, "Robust Control of Synchronous Reluctance Motors by Means of Linear Matrix Inequalities",IEEE Transactions on Energy Conversion, pp. 1-1, 2020.https://doi.org/10.1109/TEC.2020.3028568 DOI: https://doi.org/10.1109/TEC.2020.3028568

.[29]R. Krishnan,Switched Reluctance Motor Drives:Modeling, Simulation, Analysis, Design, and Applications, CRC Press, 2001.

M. V. de Paula, T. A. d. S. Barros, H. S. Moreira, E. H.Catata, M. G. Villalva, E. R. Filho, "A Dahlin Cruise Control Design Method for Switched Reluctance Motors with Minimum Torque Ripple Point Tracking Applied in Electric Vehicles", IEEE Transactions on Transportation Electrification, pp. 1-1, 2020.

Published

2020-12-31

How to Cite

[1]
F. Pinarello Scalcon, T. Smidt Gabbi, R. Padilha Vieira, and H. Abílio Gründling, “Melhoria De Desempenho De Motores De Relutância Variável Via Algoritmo De Enxame De Partículas”, Eletrônica de Potência, vol. 25, no. 4, pp. 492–502, Dec. 2020.

Issue

Section

Original Papers