An Improved Methodology for Switching Losses Estimation in SiC MOSFETs
DOI:
https://doi.org/10.18618/REP.2020.3.0010Keywords:
Power MOSFET, Sensitivity analysis, Silicon carbide, Switching losses predictionAbstract
This work presents an improved analytical model concerning the prediction of switching losses in power MOSFETs by considering the influence of parasitic elements in the high-frequency operation of devices. By using the transistor voltage and current waveforms, it is possible to predict switching losses under hard-switching conditions adopting only parameters that can be obtained from the device datasheet. The method employs the nonlinearities associated with the junction capacitances, which are incorporated into the model through curve fitting. Besides, the sensitivity analysis is used to identify which parameters have a major influence on the estimated losses. The methodology is described in details and verified by means of experimental results concerning a SiC MOSFET, which is tested under various current and voltage conditions
Downloads
References
A. Lidow, J. Strydom, M. De Rooij, D. Reusch,GaN transistors for efficient power conversion, John Wiley& Sons, 2014. https://doi.org/10.1002/9781118844779 DOI: https://doi.org/10.1002/9781118844779
W. J. de Paula, P. L. Tavares, D. d. C. Pereira, G. M.Tavares, F. L. Silva, P. S. Almeida, H. A. C. Braga, “A review on gallium nitride switching power devices and applications”, in 2017 Brazilian Power Electronics Conference (COBEP), pp. 1-7, Nov 2017. https://doi.org/10.1109/COBEP.2017.8257254 DOI: https://doi.org/10.1109/COBEP.2017.8257254
R. R. Duarte, G. F. Ferreira, M. A. D. Costa, C. H.Barriquello, J. M. Alonso, "Study on the Applicationof Gallium Nitride Transistors in Power Electronics", Eletrônica de Potência, vol. 23, no. 1, pp. 89-97, Mar 2018. https://doi.org/10.18618/REP.2018.1.2734 DOI: https://doi.org/10.18618/REP.2018.1.2734
A. Shahabi, A. Lemmon, R. Graves, S. Banerjee,L. Gant, L. L. Jenkins, "A SiC-based isolated DC/DC converter for high density data center applications",in2018 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2294-2301, March 2018. https://doi.org/10.1109/APEC.2018.8341336 DOI: https://doi.org/10.1109/APEC.2018.8341336
L. Ceccarelli, P. D. Reigosa, F. Iannuzzo,F. Blaabjerg, "A survey of SiC power MOSFETsshort-circuit robustness and failure mode analysis”, Microelectronics Reliability, vol. 76, pp. 272-276,Sept. 2017. https://doi.org/10.1016/j.microrel.2017.06.093 DOI: https://doi.org/10.1016/j.microrel.2017.06.093
J. Brown, "Modeling the switching performance ofa MOSFET in the high side of a non-isolated buck converter",IEEE Transactions on Power Electronics, Vol. 21, no. 1, pp. 3-10, Jan 2006. https://doi.org/10.1109/TPEL.2005.861110 DOI: https://doi.org/10.1109/TPEL.2005.861110
M. Rodríguez, A. Rodríguez, P. F. Miaja, D. G. Lamar,J. S. Zúniga, "An insight into the switching processof power MOSFETs: An improved analytical losses model",IEEE Transactions on Power Electronics, vol. 25, no. 6, pp. 1626-1640, June 2010. https://doi.org/10.1109/TPEL.2010.2040852 DOI: https://doi.org/10.1109/TPEL.2010.2040852
Y. Rao, S. P. Singh, T. Kazama, "A practical switching time model for synchronous buck converters",in Applied Power Electronics Conference and Exposition(APEC), 2016 IEEE, pp. 1585-1590, IEEE, May 2016. https://doi.org/10.1109/APEC.2016.7468078 DOI: https://doi.org/10.1109/APEC.2016.7468078
D. Graovac, M. Purschel, A. Kiep, "MOSFET power losses calculation using the datasheet parameters",Infineon application note, vol. 1, 2006.
Y. Ren, M. Xu, J. Zhou, F. C. Lee, "Analytical loss model of power MOSFET",IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 310-319, March2006. https://doi.org/10.1109/TPEL.2005.869743 DOI: https://doi.org/10.1109/TPEL.2005.869743
X. Li, J. Jiang, A. Q. Huang, S. Guo, X. Deng,B. Zhang, X. She, "A SiC power MOSFET loss model suitable for high-frequency applications",IEEE Transactions on Industrial Electronics, vol. 64, no. 10,pp. 8268-8276, Oct. 2017. https://doi.org/10.1109/TIE.2017.2703910 DOI: https://doi.org/10.1109/TIE.2017.2703910
M. R. Ahmed, R. Todd, A. J. Forsyth, "Predicting Sic MOSFET Behavior Under Hard-Switching, Soft-Switching, and False Turn-On Conditions",IEEE Transactions on Industrial Electronics, vol. 64, no. 11,pp. 9001-9011, Nov. 2017. https://doi.org/10.1109/TIE.2017.2721882 DOI: https://doi.org/10.1109/TIE.2017.2721882
I. Castro, J. Roig, R. Gelagaev, B. Vlachakis,F. Bauwens, D. G. Lamar, J. Driesen, "Analytical switching loss model for super junction MOSFET with capacitive nonlinearities and displacement currents for DC-DC power converters",IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2485-2495,March 2016. https://doi.org/10.1109/TPEL.2015.2433017 DOI: https://doi.org/10.1109/TPEL.2015.2433017
F. Stueckler, E. Vecino, "Cool MOS C7 650V switch ina kelvin source configuration”, Infineon Technologies Austria AG: Villach, Austria, 2013.
R. Perret, Power electronics semiconductor devices, John Wiley & Sons, 2013.
L. Balogh, "Fundamentals of MOSFET and IGBTGate Driver Circuits (SLUA618A)",Application Report, 2017.
Hebei, Datasheet, Thermoelectric Cooler (TEC1-12706), May 2016.
Rohm semicondutor, Datasheet,SCT3120AL, 2016
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Eletrônica de Potência
This work is licensed under a Creative Commons Attribution 4.0 International License.