Modelagem e Controle de um Conversor Dual Active Half-Bridge com Modulação PWM Simétrica Aplicado à Interligação de Fontes de Geração de Energia

Authors

  • Maicon Luís Flach Universidade Federal de Santa Maria (UFSM), Santa Maria – RS, Brasil
  • Lucas Giuliani Scherer Universidade Federal de Santa Maria (UFSM), Santa Maria – RS, Brasil
  • Robinson Figueiredo de Camargo Universidade Federal de Santa Maria (UFSM), Santa Maria – RS, Brasil

DOI:

https://doi.org/10.18618/REP.2021.3.0044

Keywords:

Baterias, Conversor Dual-Active Half-Bridge, DSTATCOM, Fotovoltaico

Abstract

Este artigo apresenta a modelagem e o controle de um conversor Dual Active Half-Bridge (DAHB) aplicado na interconexão de fontes de geração de energia. O sistema de geração considerado é composto por uma fonte CC de geração fotovoltaica (PV) combinada com um sistema de geração em corrente alternada (CA) hídrica, composta de um gerador de indução auto excitado (GIAE) e um compensador síncrono estático de distribuição (DSTATCOM), além de um sistema de armazenamento de energia em baterias (BESS). O conversor DAHB é responsável pela interface entre esses três sistemas, bem como por realizar o isolamento galvânico e auxiliar no sistema de gerenciamento do fluxo de potência entre as fontes de energia. Neste trabalho, a modulação PWM simétrica é aplicada no conversor DAHB, possibilitando a modelagem matemática do conversor DAHB de maneira simplificada, a partir da qual é realizado o projeto dos controladores proporcionais-integrais. Por fim, resultados de simulação e experimentais são obtidos acerca do conversor DAHB, validando este e os controladores utilizados.

Downloads

Download data is not yet available.

Author Biographies

Maicon Luís Flach, Universidade Federal de Santa Maria (UFSM), Santa Maria – RS, Brasil

nascido em 21/06/1995 em Itapiranga-SC, é engenheiro eletricista (2018), mestre (2020) e doutorando em Engenharia Elétrica pela Universidade de Federal de Santa Maria (UFSM). Suas áreas de interesse são: eletrônica de potência, qualidade do processamento da energia elétrica, sistemas de controle eletrônicos, acionamento de máquinas elétricas e fontes renováveis. É membro da SOBRAEP.

Lucas Giuliani Scherer, Universidade Federal de Santa Maria (UFSM), Santa Maria – RS, Brasil

nascido em 08/10/1983 em Santa Maria, é engenheiro eletricista (2007), mestre (2012) e doutor em Engenharia Elétrica (2016) pela Universidade Federal de Santa Maria (UFSM). Atualmente é professor adjunto da UFSM. Suas áreas de interesse são: eletrônica de potência, processamento de energia elétrica, sistemas de controle eletrônicos, sistemas de geração distribuídas e acionamentos de máquinas elétricas. É membro da SOBRAEP.

Robinson Figueiredo de Camargo, Universidade Federal de Santa Maria (UFSM), Santa Maria – RS, Brasil

nascido em 12/08/1976 em Santa Maria-RS, é engenheiro eletricista (2000), mestre (2002) e doutor em Engenharia Elétrica (2006) pela Universidade Federal de Santa Maria. Ele foi coordenador do Curso de Engenharia de Controle e Automação de 2010-2012. Atualmente é Chefe do Departamento de Processamento de Energia Elétrica. Suas áreas de interesse são: fontes de geração renováveis, métodos de sincronização, qualidade de energia, DSTATCOM e filtros ativos de potência. É membro da SOBRAEP.

References

[ 1]Y. Guan, J. C. Vasquez, J. M. Guerrero, D. Wu, W. Feng and Y. Wang. "Frequency Stability of Hierarchically Controlled Hybrid Photovoltaic-Battery-Hydropower Microgrids". IEEE Energy Conversion Congress and Exposition (ECCE), 2014. https://doi.org/10.1109/ECCE.2014.6953606 DOI: https://doi.org/10.1109/ECCE.2014.6953606

[ 2]A. Beluco, P. K. Souza and A. Krenzinger. "PV hydro hybrid systems". IEEELatin America Transactions, vol. 6, no. 7, December 2008. https://doi.org/10.1109/TLA.2008.4917434 DOI: https://doi.org/10.1109/TLA.2008.4917434

[ 3]J. M. Guerrero, P. C. Loh, T. L. Lee and M. Chandorkar. "Advanced Control Architectures for Intelligent Microgrids - Part II: Power Quality, Energy Storage, and AC/DC Microgrids". IEEE Transactions on Industrial Electronics, vol. 60, no. 4, april 2013. https://doi.org/10.1109/TIE.2012.2196889 DOI: https://doi.org/10.1109/TIE.2012.2196889

[ 4]R. Muhida, A. Mostavan, W. Sujatmiko, M. Park and K. Mastsuura. "The 10 years operation of a PV-micro-hydro hybrid system in Taratak, Indonesia". Solar Energy Materials & Solar Cells 67, 2001. https://doi.org/10.1016/S0927-0248(00)00334-2 DOI: https://doi.org/10.1016/S0927-0248(00)00334-2

[ 5]J. Kenfack, F. P. Neirac, T. T. Tatietse, D. Mayer, M. Fogue and A. Lejeune. "Microhydro-PV-hybrid system: Sizing a small hydro-PV-hybrid system for rural electrification in developing countries". Renewable Energy 34, 2009. https://doi.org/10.1016/j.renene.2008.12.038 DOI: https://doi.org/10.1016/j.renene.2008.12.038

[ 6]B. Jena and A. Choudhury. "Voltage and Frequency Stabilisation In a Micro-Hydro-PV Based Hybrid Microgrid Using FLC Based STATCOM Equipped with BESS". International Conference on circuits Power and Computing Technologies [ ICCPCT], 2017. https://doi.org/10.1109/ICCPCT.2017.8074291 DOI: https://doi.org/10.1109/ICCPCT.2017.8074291

[ 7]U. K. Kalla, B. Singh, S. S. Murthy. "Slide mode control of microgrid using small hydro driven single-phase SEIG integrated with solar PV array". IET Renew. Power Gener., vol 11 Iss. 11, pp 1464-1472, 2017. https://doi.org/10.1049/iet-rpg.2016.0089 DOI: https://doi.org/10.1049/iet-rpg.2016.0089

[ 8]Seema and B. Singh. "Intelligent Control of SPV-Battery-Hydro Based Microgrid". IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2016. https://doi.org/10.1109/PEDES.2016.7914506 DOI: https://doi.org/10.1109/PEDES.2016.7914506

[ 9]M. Rezkallah, S. Sharma, A. Chandra and B. Singh. "Hybrid Standalone Power Generation System Using Hydro-PV-Battery for Residential Green Buildings". 41st Annual Conference of the IEEE Industrial Electronics Society, 2015. https://doi.org/10.1109/IECON.2015.7392678 DOI: https://doi.org/10.1109/IECON.2015.7392678

[ 10]W. Xu, Z. Guo, S. M. Tayebi, S. Rajendran, A. Sun, R. Yu andA. X. Huang. "Hardware Design and Demonstration of a 100kW, 99% Efficiency Dual Active Half Bridge Converter Based on 1700V SiC Power MOSFET". IEEE Applied Power Electronics Conference and Exposition(APEC), 2020. https://doi.org/10.1109/APEC39645.2020.9124401 DOI: https://doi.org/10.1109/APEC39645.2020.9124401

[ 11]L. G. Scherer, R. F. de Camargo. Controle de Frequência e Tensão de Micro Centrais Hidrelétricas que Utilizam Geradores de Indução Auto-excitados com Emprego da Modelagem Não Linear de Turbinas Hidráulicas. Eletrônica de Potência, n. 4, v. 17, p. 690-701, November 2012. https://doi.org/10.18618/REP.2012.4.690701 DOI: https://doi.org/10.18618/REP.2012.4.690701

[ 12]C. B. Tischer, L. G. Scherer, R. F. de Camargo. Topologia Híbrida Trifásica a Três Fios para Regulação de Tensão em Sistemas de Geração Baseados em Gerador de Indução Autoexcitado. Eletrônica de Potência, n. 1, v. 20, p. 40-49, February 2015. https://doi.org/10.18618/REP.2015.1.040049 DOI: https://doi.org/10.18618/REP.2015.1.040049

[ 13]M. Wang, Y. Du, S. Lukic and A. Q. Huang. "Small-Signal Analysis and Modeling of the Dual Active Half Bridge Converter". Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012. https://doi.org/10.1109/APEC.2012.6166071 DOI: https://doi.org/10.1109/APEC.2012.6166071

[ 14]A. Amin, M. Shousha, A. Prodic, B. Lynch. "A Transformerless Dual Active Half-BridgeDC-DC Converter for Point-of-Load Power Supplies". IEEE Energy Conversion Congress and Exposition (ECCE), 2015. https://doi.org/10.1109/ECCE.2015.7309680 DOI: https://doi.org/10.1109/ECCE.2015.7309680

[ 15]S. Chakraborty and S. Chattopadhyay. "Minimum-RMS-Current Operation of Asymmetric Dual Active Half-Bridge Converters With and Without ZVS". IEEE Transactions On Power Electronics, vol. 32, no. 7, july 2017. https://doi.org/10.1109/TPEL.2016.2613874 DOI: https://doi.org/10.1109/TPEL.2016.2613874

[ 16]B. Han, C. Bai, J. S. Lee and M. Kim. "Repetitive Controller of Capacitor-Less Current-Fed Dual-Half-Bridge Converter for Grid-Connected Fuel Cell System". IEEE Transactions On Industrial Electronics, vol. 65, no. 10, october 2018. https://doi.org/10.1109/TIE.2018.2804898 DOI: https://doi.org/10.1109/TIE.2018.2804898

[ 17]K. Xiangli, S. Li and K. M. Smedley. "Decoupled PWM Plus Phase-Shift Control for a Dual-Half-Bridge Bidirectional DC-DC Converter". IEEE Transactions On Power Electronics, vol. 33, no. 8, august 2018. https://doi.org/10.1109/TPEL.2017.2758398 DOI: https://doi.org/10.1109/TPEL.2017.2758398

[ 18]F. Gao and D. Rogers. "Duty-cycle plus phase-shift control for a dual active half bridge based bipolar DC microgrid". IEEE Applied Power Electronics Conference and Exposition (APEC), 2018. https://doi.org/10.1109/APEC.2018.8341212 DOI: https://doi.org/10.1109/APEC.2018.8341212

[ 19]S. Wu, L. Li, W. Liu. "SensorlessCurrent Sharing Method for Two Module Input-Parallel Output-Parallel(IPOP) Connected Dual Active Half-Bridge(DAHB) Converters". 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2019. https://doi.org/10.1109/ICIEA.2019.8833717 DOI: https://doi.org/10.1109/ICIEA.2019.8833717

[ 20]H. Shi, K. Sun, H. Wu and Y. Li. "A Unified State-Space Modeling Method for a Phase-Shift Controlled Bidirectional Dual-Active Half-Bridge Converter". IEEE Transactions On Power Electronics, vol. 35, no. 3, march 2020. https://doi.org/10.1109/TPEL.2019.2930569 DOI: https://doi.org/10.1109/TPEL.2019.2930569

[ 21]G. C. Silveira, F. L. Tofoli; L. D. S. Bezerra, R. P. Torrico-Bascopé. "Analysis and small-signal modeling of a non isolated high voltage step-up dc-dc boost converter". IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), 2015 https://doi.org/10.1109/COBEP.2015.7420027 DOI: https://doi.org/10.1109/COBEP.2015.7420027

Published

2021-09-30

How to Cite

[1]
M. L. Flach, L. G. Scherer, and R. F. de Camargo, “Modelagem e Controle de um Conversor Dual Active Half-Bridge com Modulação PWM Simétrica Aplicado à Interligação de Fontes de Geração de Energia”, Eletrônica de Potência, vol. 26, no. 3, pp. 238–249, Sep. 2021.

Issue

Section

Original Papers