Análise de uma Proposta de Condicionador de Potência na Geração Fotovoltaica para Melhorar a Qualidade de Energia

Authors

  • Jaqueline O. Rezende Instituto Federal de Goiás (UFG), Jataí – GO, Brasil e Universidade Federal de Uberlândia (UFU), Uberlândia – MG, Brasil
  • Geraldo C. Guimarães Universidade Federal de Uberlândia (UFU), Uberlândia – MG, Brasil
  • Paulo Henrique O. Rezende Universidade Federal de Uberlândia (UFU), Uberlândia – MG, Brasil
  • Thales L. Oliveira Instituto Federal de Goiás (IFG), Campi Itumbiara, Itumbiara – GO, Brasil
  • Leonardo R. C. Silva Instituto Federal de Goiás (IFG), Campi Itumbiara, Itumbiara – GO, Brasil
  • Anderson R. Piccini Instituto Federal do Paraná (IFPR), Campi Paranavaí, Paranavaí – PR, Brasil

DOI:

https://doi.org/10.18618/REP.2021.3.0004

Keywords:

qualidade da energia, Sistema Fotovoltaico

Abstract

Neste artigo, um condicionador de potência de quatro fios é proposto para conectar os painéis fotovoltaicos à rede elétrica. Este condicionador visa injetar potência ativa na rede e, ao mesmo tempo, melhorar a qualidade da energia quando há cargas desequilibradas e não lineares no sistema elétrico. Assim, são realizadas simulações computacionais para uma rede elétrica composta por dois sistemas fotovoltaicos conectados a um sistema elétrico e um conjunto de cargas com características desequilibradas, harmônicas e lineares. Inicialmente, os dois sistemas fotovoltaicos são conectados à rede por meio de inversores trifásicos. Em seguida, um dos inversores é substituído pelo condicionador de potência proposto. Com este estudo, constatou-se que o condicionador de potência proposto utilizado para conectar a geração fotovoltaica à rede elétrica contribui significativamente para suprimir correntes harmônicas e desequilibradas, trazendo melhorias significativas na qualidade de energia do sistema elétrico analisado.

Downloads

Download data is not yet available.

Author Biographies

Jaqueline O. Rezende, Instituto Federal de Goiás (UFG), Jataí – GO, Brasil e Universidade Federal de Uberlândia (UFU), Uberlândia – MG, Brasil

concluiu a graduação em 2012 e obteve a titulação de mestre em 2015 em Engenharia Elétrica, pela Universidade Federal de Uberlândia (UFU). Atualmente é professora do Instituto Federal de Goiás - Campus Jataí e aluna de doutorado em Engenharia Elétrica da UFU. Suas pesquisas se concentram na área de energia solar fotovoltaica, sistemas de energia elétrica e dinâmica de sistemas elétricos.

Geraldo C. Guimarães, Universidade Federal de Uberlândia (UFU), Uberlândia – MG, Brasil

graduou-se em Engenharia Elétrica pela Universidade Federal de Uberlândia (UFU) em 1977. Obteve o título de mestre em Engenharia Elétrica pela Universidade Federal de Santa Catarina em 1984 e o grau de PhD em Engenharia Elétrica pela Universidade de Aberdeen, Aberdeen, Reino Unido, em 1990. Atualmente é professor na Faculdade de Engenharia Elétrica da UFU. Suas pesquisas se concentram na área de geração distribuída, dinâmica e sistemas elétricos.

Paulo Henrique O. Rezende, Universidade Federal de Uberlândia (UFU), Uberlândia – MG, Brasil

concluiu a graduação em 2010, o mestrado em 2012 e o doutorado em 2016 em Engenharia Elétrica pela Universidade Federal de Uberlândia. Atualmente é professor da Faculdade de Engenharia Elétrica da Universidade Federal de Uberlândia. Suas pesquisas se concentram na área de qualidade da energia elétrica, limites de suportabilidade e sensibilidade de eletrodomésticos frente a distúrbios elétricos e transmissão de energia em corrente contínua.

Thales L. Oliveira, Instituto Federal de Goiás (IFG), Campi Itumbiara, Itumbiara – GO, Brasil

concluiu a graduação no ano de 2014, obteve a titulação de mestre em 2016 e de doutor em 2019 em Engenharia Elétrica pela Universidade Federal de Uberlândia. Atualmente é professor do Instituto Federal de Goiás – Campus Itumbiara. Suas pesquisas se concentram na área de fluxo de carga, desenvolvimento de software para análise de sistemas elétricos de potência e curto-circuito.

Leonardo R. C. Silva, Instituto Federal de Goiás (IFG), Campi Itumbiara, Itumbiara – GO, Brasil

concluiu a graduação em Engenharia Elétrica no ano de 2012, na Universidade de Uberaba, obteve a titulação de mestre em 2015 e de doutor em 2019 pela Universidade Federal de Uberlândia. Atualmente é professor do Instituto Federal de Goiás – Campus Itumbiara. Suas pesquisas se concentra nas áreas de geração solar fotovoltaica e geração distribuída de energia.

Anderson R. Piccini, Instituto Federal do Paraná (IFPR), Campi Paranavaí, Paranavaí – PR, Brasil

graduado em Tecnologia em Eletrônica pela Universidade Tecnológica Federal do Paraná em 2004. Obteve o título de mestre em Engenharia Elétrica pela Universidade Federal de Uberlândia (UFU), em 2014. É professor do Instituto Federal de Educação, Ciência e Tecnologia do Paraná IFPR - Campus Paranavaí. Atualmente é aluno de doutorado do programa de pós-graduação em Engenharia Elétrica na UFU. Suas pesquisas se concentram na área de energia solar fotovoltaica.

References

[ 1]Y. Zhu and J. Fei, "Disturbance Observer Based Fuzzy Sliding Mode Control of PV Grid Connected Inverter," IEEE Access, vol. 6, pp. 21202-21211, Apr. 2018. https://doi.org/10.1109/ACCESS.2018.2825678 DOI: https://doi.org/10.1109/ACCESS.2018.2825678

[ 2]B. Han, B. Bae, H. Kim, and S. Baek, "Combined operation of unified power-quality conditioner with distributed generation," IEEE Trans. Power Deliv., vol. 21, no. 1, pp. 330-338, Dec. 2006, https://doi.org/10.1109/TPWRD.2005.852843 DOI: https://doi.org/10.1109/TPWRD.2005.852843

[ 3]M. Davari, S. M. Aleemran, H. Nafisi, I. Salabeigi, and G. B. Gharehpetian, "Modeling the combination of UPQC and photovoltaic arrays with Multi-Input Single-Output DC-DC converter," in 2009 IEEE International Conference on Industrial Technology, 2009, pp. 1-6, https://doi.org/10.1109/ICIT.2009.4939547 DOI: https://doi.org/10.1109/ICIT.2009.4939547

[ 4]S. Sindhu, M. R. Sindhu, and T. N. P. Nambiar, "Implementation of photovoltaic integrated unified power conditioner for power quality enhancement," in 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2016, pp. 1-6, https://doi.org/10.1109/PEDES.2016.7914305 DOI: https://doi.org/10.1109/PEDES.2016.7914305

[ 5]S. K. Dash and P. K. Ray, "Novel PV-tied UPQC topology based on a new model reference control scheme and integral plus sliding mode dc-link controller," Int. Trans. Electr. Energy Syst., vol. 28, no. 7, p. e2564, Jul. 2018, https://doi.org/10.1002/etep.2564 DOI: https://doi.org/10.1002/etep.2564

[ 6]P. Kumar, A. Kumar, and V. Gupta, "Design and implementation of solar PV fed UPQC with advanced MPPT technique," in 2017 International Conference on Innovations in Control, Communication and Information Systems (ICICCI), 2017, pp. 1-9, https://doi.org/10.1109/ICICCIS.2017.8660829 DOI: https://doi.org/10.1109/ICICCIS.2017.8660829

[ 7]S. Devassy and B. Singh, "Discrete SOGI based control of solar photovoltaic integrated unified power quality conditioner," in 2016 National Power Systems Conference (NPSC), 2016, pp. 1-6, https://doi.org/10.1109/NPSC.2016.7858966 DOI: https://doi.org/10.1109/NPSC.2016.7858966

[ 8]A. Patel, H. D. Mathur, and S. Bhanot, "A new SRF-based power angle control method for UPQC-DG to integrate solar PV into grid," Int. Trans. Electr. Energy Syst., vol. 29, no. 1, p. e2667, Jan. 2019, https://doi.org/10.1002/etep.2667 DOI: https://doi.org/10.1002/etep.2667

[ 9]A. Awasthi and D. Patel, "Implementation of adaptive hysteresis current control technique for shunt active power conditioner and its comparison with conventional hysteresis current control technique," in 2017 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), 2017, pp. 1-6, https://doi.org/10.1109/SPICES.2017.8091304 DOI: https://doi.org/10.1109/SPICES.2017.8091304

[ 10]C. Y. Jeong, J. G. Cho, Y. Kang, G. H. Rim, and E. H. Song, "A 100 kVA power conditioner for three-phase four-wire emergency generators," in PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), 1998, vol. 2, pp. 1906-1911 vol.2,

[ 11]I. Vechiu, G. Gurguiatu, and E. Rosu, "Advanced Active Power Conditioner to improve power quality in microgrids," in 2010 Conference Proceedings IPEC, 2010, pp. 728-733, https://doi.org/10.1109/IPECON.2010.5697021 DOI: https://doi.org/10.1109/IPECON.2010.5697021

[ 12]L. Zhang, P. C. Loh, and F. Gao, "An integrated nine-switch power conditioner," in The 2010 International Power Electronics Conference - ECCE ASIA -, 2010, pp. 2663-2669, https://doi.org/10.1109/IPEC.2010.5542338 DOI: https://doi.org/10.1109/IPEC.2010.5542338

[ 13]R. A. Wanjari, A. B. Parit, and H. T. Jadhav, "An integrated eight-switch power conditioner for current and voltage profile improvement," in 2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT), 2017, pp. 1-6, https://doi.org/10.1109/ICCPCT.2017.8074271 DOI: https://doi.org/10.1109/ICCPCT.2017.8074271

[ 14]S. Devassy and B. Singh, "PLL-less d-q control of solar PV integrated UPQC," in 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2016, pp. 1-6, https://doi.org/10.1109/PEDES.2016.7914293 DOI: https://doi.org/10.1109/PEDES.2016.7914293

[ 15]M. C. Cavalcanti, G. M. S. Azevedo, B. A. Amaral, and F. A. S. Neves, "Unified power quality conditioner in a grid-connected photovoltaic system," Electr. Power Qual. Util. J., vol. 12, no 2, pp. 59-69, Dec. 2006.

[ 16]Amirullah, A. Soeprijanto, Adiananda, and O. Penangsang, "Power Transfer Analysis Using UPQC-PV System Under Sag and Interruption With Variable Irradiance," in 2020 International Conference on Smart Technology and Applications (ICoSTA), 2020, pp. 1-7, https://doi.org/10.1109/ICoSTA48221.2020.1570615953 DOI: https://doi.org/10.1109/ICoSTA48221.2020.1570615953

[ 17]A. Patel, S. K. Yadav, H. D. Mathur, S. Bhanot, and R. C. Bansal, "Optimum sizing of PV based UPQC-DG with improved power angle control," Electr. Power Syst. Res., vol. 182, p. 106259, May. 2020, https://doi.org/10.1016/j.epsr.2020.106259 DOI: https://doi.org/10.1016/j.epsr.2020.106259

[ 18]G. M. Pelz, S. A. O. da Silva, and L. P. Sampaio, "Distributed generation integrating a photovoltaic-based system with a single- to three-phase UPQC applied to rural or remote areas supplied by single-phase electrical power," Int. J. Electr. Power Energy Syst., vol. 117, p. 105673, May. 2020, https://doi.org/10.1016/j.ijepes.2019.105673 DOI: https://doi.org/10.1016/j.ijepes.2019.105673

[ 19]Solar Hub, "PV Module SPR-415E-WHT-D Details," 2019.

[ 20]M. Golzar, H. Van Khang, and A. M. M. Versland, "Control of ultra-high switching frequency power converters using virtual flux-based direct power control," in 2017 20th International Conference on Electrical Machines and Systems (ICEMS), 2017, pp. 1-6, https://doi.org/10.1109/ICEMS.2017.8055976 DOI: https://doi.org/10.1109/ICEMS.2017.8055976

[ 21]B. Callanan, "Application considerations for Silicon Carbide MOSFETs." Cree Inc.

[ 22]L. Abbatelli, M. Macauda, and G. Catalisano, "Fully SiC based high efficiency boost converter," in 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, 2014, pp. 1835-1837, https://doi.org/10.1109/APEC.2014.6803555 DOI: https://doi.org/10.1109/APEC.2014.6803555

[ 23]A. Reznik, M. G. Simões, A. Al-Durra, and S. M. Muyeen, "LCL Filter Design and Performance Analysis for Grid-Interconnected Systems,"IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1225-1232, Jul. 2014, https://doi.org/10.1109/TIA.2013.2274612 DOI: https://doi.org/10.1109/TIA.2013.2274612

[ 24]R. Teodorescu, M. Liserre, and P. Rodriguez, Grid Converters for Photovoltaic and Wind Power Systems. Wiley, 2011. https://doi.org/10.1002/9780470667057 DOI: https://doi.org/10.1002/9780470667057

[ 25]A. C. de Souza, "Sistemas fotovoltaicos trifásicos com compensação de reativo, armazenamento interno de energia e inércia virtual," Universidade Federal de Uberlândia, 2020.

[ 26]J. k. Sahu, S. Sahu, J. P. Patra, S. K. Maharana, and B. Panda, "Harmonics analysis of a PV integrated Hysteresis current control inverter connected with grid and without grid," in 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), 2019, pp. 1154-1157, https://doi.org/10.1109/ICSSIT46314.2019.8987864 DOI: https://doi.org/10.1109/ICSSIT46314.2019.8987864

[ 27]S. Sahoo, S. K. M. ishra, and J. K. Sahu, "Standalone PV System Integrated with Hysteresis Current Controlled Inverter using MPPT Techniques," in 2019 International Conference on Communication and Electronics Systems (ICCES), 2019, pp. 2024-2029, https://doi.org/10.1109/ICCES45898.2019.9002384 DOI: https://doi.org/10.1109/ICCES45898.2019.9002384

[ 28]J. Liu, Y. Wu, L. Fan, Z. Si, and Z. Jia, "Current Hysteresis Control Design of Motorized Spindle Driven System Based on Semi-Physical Simulation Model," in 2020 Chinese Control And Decision Conference (CCDC), 2020, pp. 1110-1115, https://doi.org/10.1109/CCDC49329.2020.9164078 DOI: https://doi.org/10.1109/CCDC49329.2020.9164078

[ 29]S. Agarwal and A. Maity, "A 10-MHz Current-Mode Fixed-Frequency Hysteretic Controlled DC-DC Converter With Fast Transient Response," in 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Oct. 2019, pp. 945-948, https://doi.org/10.1109/MWSCAS.2019.8885176 DOI: https://doi.org/10.1109/MWSCAS.2019.8885176

[ 30]M. Kanzian, M. Agostinelli, and M. Huemer, "Digital hysteresis sliding mode control for interleaved DC-DC converters," Control Eng. Pract., vol. 90, pp. 148-159, Sep. 2019, https://doi.org/10.1016/j.conengprac.2019.07.001 DOI: https://doi.org/10.1016/j.conengprac.2019.07.001

[ 31]R. Viswadev, A. Mudlapur, V. V Ramana, B. Venkatesaperumal, and S. Mishra, "A Novel AC Current Sensorless Hysteresis Control for Grid-Tie Inverters," IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 11, pp. 2577-2581, Dec. 2020, https://doi.org/10.1109/TCSII.2019.2960289 DOI: https://doi.org/10.1109/TCSII.2019.2960289

Published

2021-09-30

How to Cite

[1]
J. O. Rezende, G. C. Guimarães, P. H. O. Rezende, T. L. Oliveira, L. R. C. Silva, and A. R. Piccini, “Análise de uma Proposta de Condicionador de Potência na Geração Fotovoltaica para Melhorar a Qualidade de Energia”, Eletrônica de Potência, vol. 26, no. 3, pp. 268–278, Sep. 2021.

Issue

Section

Original Papers