Metodologia de Projeto para Minimização de Volume do Filtro LCL de Conversores Conectados à Rede Considerando Tempo de Vida do Capacitor

Authors

  • Pedro C. Bolsi Universidade Federal de Santa Maria, Santa Maria – RS, Brasil e Universidade Federal da Bahia, Salvador – BA, Brasil
  • Edemar O. Prado Universidade Federal de Santa Maria, Santa Maria – RS, Brasil e Universidade Federal da Bahia, Salvador – BA, Brasil
  • Arthur F. Precht Universidade Federal de Santa Maria, Santa Maria – RS, Brasil
  • João M. Lenz Universidade Federal de Santa Maria, Santa Maria – RS, Brasil e Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí – RS, Brasil
  • Hamiltom C. Sartori Universidade Federal de Santa Maria, Santa Maria – RS, Brasil
  • José Renes Pinheiro Universidade Federal de Santa Maria, Santa Maria – RS, Brasil e Universidade Federal da Bahia, Salvador – BA, Brasil

DOI:

https://doi.org/10.18618/REP.2021.4.0028

Keywords:

Filtro LCL, Modelagem de perdas, Tempo de vida, Volume

Abstract

Este artigo apresenta uma metodologia para o dimensionamento de filtros LCL aplicados a conversores conectados à rede. Esta baseia-se em uma análise conjunta dos projetos paramétrico e físico. São determinadas diferentes combinações de L-C-L que atendem às restrições normativas, a fim de encontrar os valores que resultem no menor volume total, maior tempo de vida do capacitor, ou compromisso entre ambos. Para isso, são modeladas as perdas nos componentes, bem como aspectos práticos e particularidades de cada tecnologia empregada no filtro. Resultados experimentais elétricos e térmicos validam a metodologia proposta.

Downloads

Download data is not yet available.

Author Biographies

Pedro C. Bolsi, Universidade Federal de Santa Maria, Santa Maria – RS, Brasil e Universidade Federal da Bahia, Salvador – BA, Brasil

natural de Frederico Westphalen-RS. Possui graduação (2018) e mestrado (2020) em Engenharia Elétrica. Atualmente, é aluno de doutorado em Engenharia Elétrica pela Universidade Federal de Santa Maria (UFSM) e pela Universidade Federal da Bahia (UFBA). Possui experiência na área de eletrônica de potência, atuando principalmente na área de projeto físico e otimização de dispositivos magnéticos, modelagem de perdas no cobre e núcleo, projeto de filtros e uso de ferramentas FEA.

Edemar O. Prado, Universidade Federal de Santa Maria, Santa Maria – RS, Brasil e Universidade Federal da Bahia, Salvador – BA, Brasil

natural de Frederico Westphalen-RS. Possui graduação em Engenharia Elétrica (2018) e mestrado (2020). Atualmente, é aluno de doutorado em Engenharia Elétrica pela Universidade Federal de Santa Maria (UFSM) e pela Universidade Federal da Bahia (UFBA). Possui experiência na área de eletrônica de potência, atuando principalmente na área de otimização de transistores aplicados a conversores estáticos, sistemas de transferência de calor e análise física de semicondutores.

Arthur F. Precht, Universidade Federal de Santa Maria, Santa Maria – RS, Brasil

natural de Taquari-RS. Possui formação em Técnico em Mecatrônica (2018) pelo Instituto Federal do Sul-rio-grandense de Charqueadas. Atualmente é graduando em Engenharia Aeroespacial pela Universidade Federal de Santa Maria, atuando como bolsista de iniciação tecnológica industrial. Possui experiência nas áreas de eletrônica embarcada e próteses inteligentes, atuando principalmente na implementação de gate drivers e conversores diversos, auxiliando em experimentos e condução de pesquisas no laboratório.

João M. Lenz, Universidade Federal de Santa Maria, Santa Maria – RS, Brasil e Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí – RS, Brasil

recebeu o grau de Bacharel (2013) e de Mestre (2015) em Engenharia Elétrica pela Universidade Federal de Santa Maria (UFSM). Em 2019, recebeu o grau de Doutor em Engenharia Elétrica na linha de Eletrônica de Potência pela mesma instituição. Entre 2018 e 2019 foi pesquisador visitante no Center of Reliable Power Electronics (CORPE), na Aalborg University, Dinamarca. Atualmente é Professor Assistente da Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUí), onde também integra o corpo permanente do Programa de Pós-Graduação em Modelagem Matemática e Computacional (PPGMMC). É pesquisador dos Grupo de Automação Industrial e Controle (GAIC/UNIJUí) e do Grupo de Eletrônica de Potência e Controle (GEPOC/UFSM), e é professor colaborador jovemapadrinhado do Programa de Pós-Graduação em Engenharia Elétrica da UFSM. Tem experiência em análise, geração e integração de sistemas fotovoltaicos, eólicos, e outras fontes alternativas de energia. Realiza pesquisas em modelagem de recursos energéticos distribuídos, smart grids, projeto otimizado de conversores, e confiabilidade em eletrônica de potência.

Hamiltom C. Sartori, Universidade Federal de Santa Maria, Santa Maria – RS, Brasil

natural de Marau-RS. Possui graduação em Engenharia Elétrica (2007) na Universidade Federal de Santa Maria, mestrado (2009), doutorado (2013) e pós-doutorado (2016) em Engenharia Elétrica. Atualmente é professor Adjunto de Departamento de Processamento de Energia Elétrica da Universidade Federal de Santa Maria. Possui experiência na área de eletrônica de potência, atuando principalmente nas áreas de projetos otimizados de conversores estáticos, conversores de alto ganho, projetos de componentes magnéticos, semicondutores de potência, sensoriamento e compatibilidade eletromagnética (EMI).

References

[ 1]"IEEE Recommended Practice and Requirements forHarmonic Control in Electric Power Systems",IEEEStd 519-2014 (Revision of IEEE Std 519-1992), pp. 1-29, Jun. 2014.

[ 2]"Electromagnetic compatibility (EMC) - Part 3-4:Limits - Limitation of emission of harmonic currentsin low-voltage power supply systems for equipmentwith rated current greater than 16 A",IEC TS 61000-3-4:1998, pp. 1-29, Out. 1998.

[ 3]A. Reznik, M. G. Simões, A. Al-Durra, S. Muyeen,"LCLfilter design and performance analysis forgrid-interconnected systems",IEEE transactions onindustry applications, vol. 50, no. 2, pp. 1225-1232,Jul. 2013. https://doi.org/10.1109/TIA.2013.2274612 DOI: https://doi.org/10.1109/TIA.2013.2274612

[ 4]T. E. Nuñez-Zuñiga, J. A. Pomilio, "Introduçãoàs técnicas de síntese e aplicações de indutânciasnegativas",Eletrônica de Potência, vol. 9, no. 1, p. 19,Jun. 2004. https://doi.org/10.18618/REP.2004.1.019027 DOI: https://doi.org/10.18618/REP.2004.1.019027

[ 5]T. E. N. Zuñiga, M. V. Ataíde, J. A. Pomilio, "Filtroativo de potencia sintetizando cargas resistivas",Revista Eletrônica de Potência, vol. 5, no. 1, pp. 35-42, Mai. 2000. https://doi.org/10.18618/REP.2000.1.035042 DOI: https://doi.org/10.18618/REP.2000.1.035042

[ 6]P. S. N. Filho, T. A. dos Santos Barros, M. G. Villalva,E. R. Filho, "Modelagem precisa para análise e projetode controle do elo CC do conversor fonte de tensãotrifásico com filtro LCL conectado à rede elétrica",Eletrônica de Potência, vol. 22, no. 1, pp. 7-18, Mar. 2017. https://doi.org/10.18618/REP.2017.1.2639 DOI: https://doi.org/10.18618/REP.2017.1.2639

[ 7]W. A. Venturini, H. Jank, F. E. Bisogno, M. L.Martins, H. Pinheiro, "Estágio de Entrada com DuplaFuncionalidade Aplicado a uma UPS Trifásica de AltoDesempenho",Eletrônica de Potência, vol. 23, no. 2,pp. 244-255, Jun. 2018. https://doi.org/10.18618/REP.2018.2.2776 DOI: https://doi.org/10.18618/REP.2018.2.2776

[ 8]P. Evald, R. V. Tambara, H. A. Gründling, "A directdiscrete-time reduced order robust model referenceadaptive control for grid-tied power converters withLCL filter", Eletrônica de Potência, vol. 25,no. 3, pp. 361-372, Set. 2020. https://doi.org/10.18618/REP.2020.3.0039 DOI: https://doi.org/10.18618/REP.2020.3.0039

[ 9]G. V. Hollweg, P. J. Evald, G. G. Koch, E. Mattos,R. V. Tambara, H. A. Gründling, "Controlador RobustoAdaptativo Super-Twisting Sliding Mode por Modelode Referência para Regulação das Correntes Injetadasem Redes Fracas por Inversores Trifásicos com FiltroLCL", Eletrônica de Potência, vol. 26, no. 2,pp. 1-12, Jun. 2021. https://doi.org/10.18618/REP.2021.2.0001 DOI: https://doi.org/10.18618/REP.2021.2.0001

[ 10]P. Evald, G. Hollweg, R. V. Tambara, H. A. Gründling,"A Discrete-time Robust Adaptive PI Controller forGrid-connected Voltage Source Converter With LCLFilter",Eletrônica de Potência, vol. 26, no. 1,pp. 19-30, Mar. 2021. https://doi.org/10.18618/REP.2021.1.0053 DOI: https://doi.org/10.18618/REP.2021.1.0053

[ 11]K. Jalili, S. Bernet, "Design ofLCLfilters of active-front-end two-level voltage-source converters",IEEETransactions on Industrial Electronics, vol. 56, no. 5,pp. 1674-1689, Jan. 2009. https://doi.org/10.1109/TIE.2008.2011251 DOI: https://doi.org/10.1109/TIE.2008.2011251

[ 12]C. Gurrola-Corral, J. Segundo, M. Esparza, R. Cruz,"Optimal LCL-filter design method for grid-connectedrenewable energy sources",International Journal ofElectrical Power & Energy Systems, vol. 120, p.105998, Set. 2020. https://doi.org/10.1016/j.ijepes.2020.105998 DOI: https://doi.org/10.1016/j.ijepes.2020.105998

[ 13]P. Channegowda, V. John, "Filter optimization forgrid interactive voltage source inverters",IEEETransactions on Industrial Electronics, vol. 57, no. 12,pp. 4106-4114, Fev. 2010. https://doi.org/10.1109/TIE.2010.2042421 DOI: https://doi.org/10.1109/TIE.2010.2042421

[ 14]J. Muhlethaler, M. Schweizer, R. Blattmann, J. W.Kolar, A. Ecklebe, "Optimal design of LCLharmonic filters for three-phase PFC rectifiers",IEEE Transactions on Power Electronics, vol. 28,no. 7, pp. 3114-3125, Out. 2012. https://doi.org/10.1109/TPEL.2012.2225641 DOI: https://doi.org/10.1109/TPEL.2012.2225641

[ 15]D. Zhou, Y. Song, Y. Liu, F. Blaabjerg, "Missionprofile based reliability evaluation of capacitor banksin wind power converters",IEEE Transactions onPower Electronics, vol. 34, no. 5, pp. 4665-4677, Ago.2018. https://doi.org/10.1109/TPEL.2018.2865710 DOI: https://doi.org/10.1109/TPEL.2018.2865710

[ 16]A. F. Cupertino, J. M. Lenz, E. M. Brito, H. A. Pereira,J. R. Pinheiro, S. I. Seleme Jr, "Impact of the missionprofile length on lifetime prediction of PV inverters",Microelectronics Reliability, vol. 100, p. 113427, Set.2019. https://doi.org/10.1016/j.microrel.2019.113427 DOI: https://doi.org/10.1016/j.microrel.2019.113427

[ 17]H. Wang, C. Li, G. Zhu, Y. Liu, H. Wang, "Model-Based Design and Optimization of Hybrid DC-Link Capacitor Banks",IEEE Transactions on PowerElectronics, vol. 35, no. 9, pp. 8910-8925, Fev. 2020. https://doi.org/10.1109/TPEL.2020.2971830 DOI: https://doi.org/10.1109/TPEL.2020.2971830

[ 18]S. Busquets-Monge, J.-C. Crebier, S. Ragon, E. Hertz,D. Boroyevich, Z. Gurdal, M. Arpilliere, D. K.Lindner, "Design of a boost power factor correctionconverter using optimization techniques",IEEETransactions on Power Electronics, vol. 19, no. 6, pp.1388-1396, Nov. 2004. https://doi.org/10.1109/TPEL.2004.836638 DOI: https://doi.org/10.1109/TPEL.2004.836638

[ 19]H. Helali, D. Bergogne, J. B. H. Slama, H. Morel,P. Bevilacqua, B. Allard, O. Brevet, "Power converter'soptimisation and design. Discrete cost functionwith genetic based algorithms",in 2005 EuropeanConference on Power Electronics and Applications,pp. 7-pp, IEEE, Set. 2005. https://doi.org/10.1109/EPE.2005.219520 DOI: https://doi.org/10.1109/EPE.2005.219520

[ 20]M. B. Said-Romdhane, M. W. Naouar, I. S. Belkhodja,E. Monmasson, "An improved LCL filter design inorder to ensure stability without damping and despitelarge grid impedance variations",Energies, vol. 10,no. 3, p. 336, Mar. 2017. https://doi.org/10.3390/en10030336 DOI: https://doi.org/10.3390/en10030336

[ 21]"DI-MAX M-13 Non-oriented Electrical Steel",AKSteel Corporation, Dez. 2019.

[ 22]"Iron Powder Catalog",Magnetics Inc, Jun. 2020.

[ 23]P. C. Bolsi, H. C. Sartori, J. R. Pinheiro, "Comparisonof Core Technologies Applied to Power Inductors",in2018 13th IEEE International Conference on IndustryApplications (INDUSCON), pp. 1100-1106, IEEE,Jan. 2019. https://doi.org/10.1109/INDUSCON.2018.8627236 DOI: https://doi.org/10.1109/INDUSCON.2018.8627236

[ 24]"Soft Ferrites and Accessories Data Handbook",Ferroxcube, Jul. 2013.

[ 25]R. P. Wojda, M. K. Kazimierczuk, "Winding resistanceand power loss of inductors with litz and solid-roundwires",IEEE Transactions on Industry Applications,vol. 54, no. 4, pp. 3548-3557, Abr. 2018. https://doi.org/10.1109/TIA.2018.2821647 DOI: https://doi.org/10.1109/TIA.2018.2821647

[ 26]P. C. Bolsi, E. O. Prado, H. C. Sartori, J. R. Pinheiro,"Análise comparativa entre modelos analíticos decálculo de perdas no núcleo aplicados a indutorescom premagnetização utilizando o material high flux", Eletrônica de Potência, vol. 25, no. 4, pp. 503-210, Dez. 2020. https://doi.org/10.18618/REP.2020.4.0054 DOI: https://doi.org/10.18618/REP.2020.4.0054

[ 27]C. W. T. McLyman,Transformer and inductor designhandbook, CRC press, Mar. 2004. https://doi.org/10.1201/9780203913598 DOI: https://doi.org/10.1201/9780203913598

[ 28]K. Ma, H. Wang, F. Blaabjerg, "New approaches toreliability assessment: Using physics-of-failure forprediction and design in power electronics systems",IEEE Power Electronics Magazine, vol. 3, no. 4, pp.28-41, Dez. 2016. https://doi.org/10.1109/MPEL.2016.2615277 DOI: https://doi.org/10.1109/MPEL.2016.2615277

[ 29]"C4AF Printed Circuit Board Mount Power FilmCapacitors",KEMET Electronics Corporation, Jan.2021.

[ 30]H. Wang, F. Blaabjerg, "Reliability of capacitors forDC-link applications in power electronic converters- An overview",IEEE Transactions on IndustryApplications, vol. 50, no. 5, pp. 3569-3578, Fev. 2014. https://doi.org/10.1109/TIA.2014.2308357 DOI: https://doi.org/10.1109/TIA.2014.2308357

[ 31]M. Liserre, F. Blaabjerg, S. Hansen, "Design andcontrol of an LCL-filter-based three-phase activerectifier",IEEE Transactions on industry applications,vol. 41, no. 5, pp. 1281-1291, Set. 2005. https://doi.org/10.1109/TIA.2005.853373 DOI: https://doi.org/10.1109/TIA.2005.853373

[ 32]M. Sanatkar-Chayjani, M. Monfared, "Design of LCLand LLCL filters for single-phase grid connectedconverters",IET Power Electronics, vol. 9, no. 9, pp.1971-1978, Jul. 2016. https://doi.org/10.1049/iet-pel.2015.0922 DOI: https://doi.org/10.1049/iet-pel.2015.0922

[ 33]M. Makdessi, A. Shari, P. Venet, P. Bevilacqua,C. Joubert, "Accelerated Ageing of Metallized FilmCapacitors Under High Ripple Currents CombinedWith a DC Voltage",IEEE Transactions on PowerElectronics, vol. 30, pp. 2435-2444, Mai. 2015 https://doi.org/10.1109/TPEL.2014.2351274 DOI: https://doi.org/10.1109/TPEL.2014.2351274

Published

2021-12-31

How to Cite

[1]
P. C. Bolsi, E. O. Prado, A. F. Precht, J. M. Lenz, H. C. Sartori, and J. R. Pinheiro, “Metodologia de Projeto para Minimização de Volume do Filtro LCL de Conversores Conectados à Rede Considerando Tempo de Vida do Capacitor”, Eletrônica de Potência, vol. 26, no. 4, pp. 399–408, Dec. 2021.

Issue

Section

Original Papers