Hybrid Power Filter Based on a Six-Switch Two-Leg Inverter

Authors

  • Leonardo R. Limongi Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
  • Luiz G. B. Genú Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
  • Luís R. Silva Filho Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
  • Fabrício Bradaschia Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
  • Gustavo M. S. Azevedo Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil

DOI:

https://doi.org/10.18618/REP.2014.2.132141

Keywords:

Active Power Filters, Diode Rectifiers, Harmonics, Hybrid Power Filters

Abstract

Hybrid power filters (HPFs) are considered an attractive solution to overcome the problem of current harmonics generated by nonlinear loads. They mix low power rating active filters with passive filters, but many of these HPF topologies have a great number of passive components and/or transformers. Based on this fact, new concepts of HPFs, consisting of small rated inverters and LC filters, have been introduced with wide acceptance. The advantage comes from the fact that these HPFs are connected to the grid without any matching transformer. This paper proposes a transformerless HPF based on a new six-switch two-leg inverter with an enhanced harmonic compensation capability. Besides presenting a reduced number of switches when compared with dual topologies, the proposed solution is capable of providing good compensation even for loads with a high harmonic content. Experimental results are presented for a HPF inverter prototype in order to demonstrate the effectiveness of the proposed topology.

Downloads

Download data is not yet available.

Author Biographies

Leonardo R. Limongi, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil

was born in Recife, Brazil, in 1978. He received the B.Sc. and M.Sc. degrees in electrical engineering from the Federal University of Pernambuco, Recife, Brazil, in 2004 and 2006, respectively. He received the Ph.D degree from Politecnico di Torino, Torino, Italy, in 2009. Since 2010, he is working as a professor in the Department of Electrical Engineering at the Federal University of Pernambuco. His research interests are renewable energy systems and power quality.

Luiz G. B. Genú, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil

was born in Pesqueira, Brazil, in 1988. He received the B.Sc. degree in electrical engineering from the Federal University of Pernambuco, Recife, Brazil, in 2012, where he is currently working toward the M.Sc. degree. His research interests are power quality and power electronics.

Luís R. Silva Filho, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil

was born in Tatuí, Brazil, in 1981. He received the B.Sc. degree in electrical engineering from the Federal University of Pernambuco, Recife, Brazil, in 2012, where he is currently working toward the M.Sc. degree. His research interests are power quality and power electronics.

Fabrício Bradaschia, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil

was born in São Paulo, Brazil, in 1983. He received the B.Sc., M.Sc. and Ph.D. degrees in electrical engineering from the Federal University of Pernambuco, Recife, Brazil, in 2006, 2008 and 2012, respectively. He worked as a visiting scholar at the University of Alcala, Madrid, Spain, from 2008 to 2009. Since 2013, he is working as an associate professor in the Department of Electrical Engineering at the Federal University of Pernambuco. His research interests are renewable energy systems and power quality.

Gustavo M. S. Azevedo, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil

was born in Belo Jardim, Brazil, in 1981. He received the B.Sc., M.Sc. and Ph.D. degrees in electrical engineering from the Federal University of Pernambuco, Recife, Brazil, in 2005, 2007 and 2011, respectively. He worked as a visiting scholar at the Polytechnical University of Catalunya, Barcelona, Spain, from 2008 to 2009. Since 2014, he is working as an associate professor in the Department of Electrical Engineering at the Federal University of Pernambuco. His research interests are renewable energy systems and microgrids.

References

R. C. Dugan, M. F. Mc Granagham, S. Santoso, and H.W. Beaty.Electrical Power Systems Quality, 2nd edition,McGraw-Hill, New York, 2002.

IEEE Recommended Practices and Requirements forHarmonic Control in Electrical Power Systems, IEEE Std 519-1992, 1993.

S. Bhattacharya, D. M. Divan, and B. Banerjee. ActiveFilter Solutions for Utility Interface. InProc. Conf. IEEE ISIE, volume 1, pages 53-63, 1995.

H. Akagi. Active Harmonic Filters.Proc. of the IEEE,93(12):2128-2141, 2005. https://doi.org/10.1109/JPROC.2005.859603 DOI: https://doi.org/10.1109/JPROC.2005.859603

R. I. Bojoi, G. Griva, V. Bostan, M. Guerriero, F.Farina, and F. Profumo. Current Control Strategy for Power Conditioners Using Sinusoidal Signal Integrator In Synchronous Reference Frame.IEEE Trans. on Power Electron., 20(6):1402-1412, 2005. https://doi.org/10.1109/TPEL.2005.857558 DOI: https://doi.org/10.1109/TPEL.2005.857558

L. B. G. Campanhol, S. A. O. da Silva, and A. Goedtel. Filtro Ativo de Potência Paralelo Aplicado em Sistemas Trifásicos a Quatro-fios. Eletrônica de Potência, 18(1):782-792, 2013. https://doi.org/10.18618/REP.2013.1.782792 DOI: https://doi.org/10.18618/REP.2013.1.782792

R. R. Matias, C. B. Jacobina, A. C. Oliveira, and W.R. N. Santos. Análise em Regime Permanente do Filtro Ativo Universal. Eletrônica de Potência, 18(4):1188-1196, 2013. https://doi.org/10.18618/REP.2013.4.11881196 DOI: https://doi.org/10.18618/REP.2013.4.11881196

W. R. N. Santos, E. R. C. da Silva, C. B. Jacobina,and E. de M. Fernandes. Single-Phase Active Power Filters with Reduced Number of Power switches and Optimum Voltage Control Angle. Eletrônica de Potência,18(4):1215-1223, 2013. https://doi.org/10.18618/REP.2013.4.12151223 DOI: https://doi.org/10.18618/REP.2013.4.12151223

D. A. Fernandes, S. R. Naidu, and K. P. Medeiros. Uma Estratégia de Controle Aplicada a Retificadores PWM e Filtros Ativos de Potência em Derivação. Eletrônica de Potência, 16(4):312-319, 2011. https://doi.org/10.18618/REP.20114.312319 DOI: https://doi.org/10.18618/REP.20114.312319

L. R. Limongi, D. Roiu, R. Bojoi, and A. Tenconi.Analysis of Active Power Filters Operating with unbalanced Loads. Eletrônica de Potência, 15(5):166-174, 2010. https://doi.org/10.18618/REP.2010.3.166174 DOI: https://doi.org/10.18618/REP.2010.3.166174

L. R. Limongi, D. Roiu, R. Bojoi, and A. Tenconi. Frequency-Domain Analisys of Resonant CurrentControllers for Active Power Filters. Eletrˆonica de Potˆencia, 15(4):294-304, 2010. https://doi.org/10.18618/REP.2010.4.294304 DOI: https://doi.org/10.18618/REP.2010.4.294304

M. G. Villalva and E. Ruppert Filho. Neural Networks Applied to the Control of Four-Wire Shunt Active Power Filter. Eletrônica de Potência, 10(1):23-30, 2005. https://doi.org/10.18618/REP.2005.1.023030 DOI: https://doi.org/10.18618/REP.2005.1.023030

Q.-N. Trinh and H.-H. Lee. An Advanced CurrentControl Strategy for Three-Phase Shunt Active Power Filters.IEEE Trans. on Ind. Electron., 60(12):5400-5410,2013. https://doi.org/10.1109/TIE.2012.2229677 DOI: https://doi.org/10.1109/TIE.2012.2229677

P. Kanjiya, V. Khadkikar, and H. H. Zeineldin. A Non iterative Optimized Algorithm for Shunt ActivePower Filter Under Distorted and Unbalanced Supply Voltages.IEEE Trans. on Ind. Electron., 60(12):5376-5390, 2013. https://doi.org/10.1109/TIE.2012.2235394 DOI: https://doi.org/10.1109/TIE.2012.2235394

Z. Chen, Y. Luo, and M. Chen. Control and Performanceof a Cascaded Shunt Active Power Filter for Aircraft Electric Power System. IEEE Trans. on Ind. Electron.,59(9):3614-3623, 2012. https://doi.org/10.1109/TIE.2011.2166231 DOI: https://doi.org/10.1109/TIE.2011.2166231

M. Angulo, D. A. Ruiz-Caballero, J. Lago, M. L. Heldwein, and S. A. Mussa. Active Power Filter Control Strategy With Implicit Closed-Loop Current Control and Resonant Controller. IEEE Trans. on Ind. Electron.,60(7):2721-2730, 2013. https://doi.org/10.1109/TIE.2012.2196898 DOI: https://doi.org/10.1109/TIE.2012.2196898

H. Hu, W. Shi, Y. Lu, and Y. Xing. DesignConsiderations for DSP-Controlled 400 Hz Shunt ActivePower Filter in an Aircraft Power System. IEEE Trans.on Ind. Electron., 59(9):3624-3634, 2012. https://doi.org/10.1109/TIE.2011.2165452 DOI: https://doi.org/10.1109/TIE.2011.2165452

G. Buticchi, L. Consolini, and E. Lorenzani. Active Filter for the Removal of the DC Current Component for Single-Phase Power Lines. IEEE Trans. on Ind. Electron.,60(10):4403-4414, 2013. https://doi.org/10.1109/TIE.2012.2213562 DOI: https://doi.org/10.1109/TIE.2012.2213562

J. Liu, P. Zanchetta, M. Degano, and E. Lavopa. Control Design and Implementation for High Performance Shunt Active Filters in Aircraft Power Grids. IEEE Trans. onInd. Electron., 59(9):3604-3603, 2012. https://doi.org/10.1109/TIE.2011.2165454 DOI: https://doi.org/10.1109/TIE.2011.2165454

Y. Tang, P. C. Loh, P. Wang, F. H. Choo, F. Gao, andF. Blaabjerg. Generalized Design of High PerformanceShunt Active Power Filter With Output LCL Filter.IEEETrans. on Ind. Electron., 59(3):1443-1452, 2012. https://doi.org/10.1109/TIE.2011.2167117 DOI: https://doi.org/10.1109/TIE.2011.2167117

S. Bhattacharya and D. M. Divan. Design and Implementation of a Hybrid Series Active Filter System. In Proc. Conf. IEEE PESC, volume 1, pages 189-195,1995.

F. Z. Peng, H. Akagi, and A. Nabae. A Novel Harmonic Power Filter. InProc. Conf. IEEE PESC, volume 2, pages 1151-1159, 1988.

H. Fujita and H. Akagi. A New Approach to HarmonicCompensation in Power Systems - A Combined System Of Shunt Passive and Series Active Filters. IEEE Trans.on Ind. Appl., 26(6):983-990, 1990. https://doi.org/10.1109/28.62380 DOI: https://doi.org/10.1109/28.62380

H. Fujita and H. Akagi. A Practical Approach To Harmonic Compensation in Power Systems-Series Connection of Passive and Active Filters. IEEE Trans. onInd. Appl., 27(6):1020-1025, 1991. https://doi.org/10.1109/28.108451 DOI: https://doi.org/10.1109/28.108451

D. Detjen, J. Jacobs, R. W. De Doncker, and H.G. Mall. A new hybrid filter to dampen resonances and compensate harmonic currents in industrial power systems with power factor correction equipment.IEEETrans. on Power Electron., 16(6):821-827, 2001. https://doi.org/10.1109/63.974380 DOI: https://doi.org/10.1109/63.974380

N. da Silva, J. A. Pomilio, and E. A. Vendrusculo. Análise e Implementação de Filtro Ativo Híbrido de Potência. Eletrônica de Potência, 17(3):575-583, 2012. https://doi.org/10.18618/REP.2012.3.575583 DOI: https://doi.org/10.18618/REP.2012.3.575583

A. Luo, C. Tang, Z. K. Shuai, W. Zhao, F. Rong, andK. Zhou. A Novel Three-Phase Hybrid Active Power Filter With a Series Resonance Circuit Tuned at the Fundamental Frequency.IEEE Trans. on Ind. Electron.,56(7):2431-2440, 2009. https://doi.org/10.1109/TIE.2009.2020082 DOI: https://doi.org/10.1109/TIE.2009.2020082

A. Luo, Z. Shuai, Z. J. Shen, W. Zhu, and X. Xu. Design Considerations for Maintaining DC-Side Voltage of Hybrid Active Power Filter With Injection Circuit. IEEE Trans. on Power Electron., 24(1):75-84, 2009. https://doi.org/10.1109/TPEL.2008.2005501 DOI: https://doi.org/10.1109/TPEL.2008.2005501

A. Luo, Z. Shuai, W. Zhu, Z. J. Shen, and C. Tu. Design and application of a hybrid active power filter with injection circuit. IET Power Electron., 3(1):54-64,2010. https://doi.org/10.1049/iet-pel.2008.0225 DOI: https://doi.org/10.1049/iet-pel.2008.0225

Z. Shuai, A. Luo, W. Zhu, R. Fan, and K. Zhou. Study on a Novel Hybrid Active Power Filter Applied to a High-Voltage Grid. IEEE Trans. on Power Del., 24(4):2344-2352, 2009. https://doi.org/10.1109/TPWRD.2009.2027506 DOI: https://doi.org/10.1109/TPWRD.2009.2027506

A. Luo, Z. Shuai, W. Zhu, R. Fan, and C. Tu. Development of Hybrid Active Power Filter Based on the Adaptive Fuzzy Dividing Frequency-Control Method. IEEE Trans. on Power Del., 24(1):424-432, 2009. https://doi.org/10.1109/TPWRD.2008.2005877 DOI: https://doi.org/10.1109/TPWRD.2008.2005877

S. Srianthumrong and H. Akagi. A Medium-VoltageTransformerless AC/DC Power Conversion System Consisting of a Diode Rectifier and a Shunt Hybrid Filter. IEEE Trans. on Ind. Appl., 39(3):874-882, 2003. https://doi.org/10.1109/TIA.2003.811787 DOI: https://doi.org/10.1109/TIA.2003.811787

J.-C. Wu, H.-L. Jou, Y.-T. Feng, W. P. Hsu, M.-S.Huang, and W. J Hou. Novel Circuit Topology For Three-Phase Active Power Filter.IEEE Trans. on Power Del.,22(1):444-449, 2007. https://doi.org/10.1109/TPWRD.2006.881416 DOI: https://doi.org/10.1109/TPWRD.2006.881416

A. Bhattacharya, C. Chakraborty, and S. Bhattacharya. Parallel-Connected Shunt Hybrid Active Power Filters Operating at Different Switching Frequencies for Improved Performance. IEEE Trans. on Ind. Electron.,59(11):4007-4019, 2012. https://doi.org/10.1109/TIE.2011.2173893 DOI: https://doi.org/10.1109/TIE.2011.2173893

L. Asiminoaei, C.Lascu, F. Blaabjerg, and I. Boldea. Performance Improvement of Shunt Active Power Filter With Dual Parallel Topology. IEEE Trans. on Power Electron., 22(1):247-259, 2007. https://doi.org/10.1109/TPEL.2006.888912 DOI: https://doi.org/10.1109/TPEL.2006.888912

C. Liu, B. Wu, N. R. Zargari, D. Xu, and J. Wang. A Novel Three-Phase Three-Leg AC/AC Converter Using Nine IGBTs. IEEE Trans. on Power Electron.,24(5):1151-1160, 2009. https://doi.org/10.1109/TPEL.2008.2004038 DOI: https://doi.org/10.1109/TPEL.2008.2004038

Downloads

Published

2014-06-30

How to Cite

[1]
L. R. Limongi, L. G. B. Genú, L. R. S. Filho, F. Bradaschia, and G. M. S. Azevedo, “Hybrid Power Filter Based on a Six-Switch Two-Leg Inverter”, Eletrônica de Potência, vol. 19, no. 2, pp. 132–141, Jun. 2014.

Issue

Section

Original Papers