A Proposal for Flicker Evaluation
DOI:
https://doi.org/10.18618/REP.2014.3.221230Keywords:
flicker, IEC flickermeter, illuminance, interharmonic, voltage fluctuationAbstract
The measured flicker levels by using the IEC standard 61000-4-15 often far exceed the established compatibility levels, even without the existence of consumer complaints. The poor measurement/complaint correlation due to the use of IEC flickermeter can be explained by two significant hypotheses. Firstly, modern lightning may be significantly less sensitive to voltage fluctuations than standard incandescent lamps upon which the entire IEC flickermeter concept is based. As a result, the luminous flux density (illuminance) variation from modern lamp bulbs is not well represented by the IEC flickermeter. Furthermore, the IEC standard 61000-4-15 is not able to detect flicker caused by high interharmonics components. In this connection, the flicker severity index measured by the IEC flickermeter to evaluate the flicker effect in modern lamp bulbs is controversial. Thus, would be the flicker planning levels and flicker requirements adequate to this scenario? This work presents a method to evaluate the flicker effect by taking into account the direct response of the illuminance variation. The test results have indicated a better correlation between measured flicker level and user complaint for all lamps tested in this study.
Downloads
References
IEC 60050-161, "International Electrotechnical Vocabulary (IEV) - Chapter 161: Electromagnetic compatibility", International Electrotechnical Commission, September/1990.
IEEE Task Force on Harmonics Modeling and Simulation, "Interharmonics: Theory and Modeling", IEEE Transactions on Power Delivery, vol. 22, no. 4, pp. 2335-2348, October/2007.
K. Anuradha, B. P. Muni, A. D. R. Kumar, "Electric Arc Furnace Modeling and Voltage Flicker Mitigation by DSTATCOM", in 2008 IEEE Region 10 and the Third International Conference on Industrial and Information Systems (ICIIS), pp. 1-6, 2008. https://doi.org/10.1109/ICIINFS.2008.4798451 DOI: https://doi.org/10.1109/ICIINFS.2008.4798451
L. A. Silva, S. P. Pimentel, J. A. Pomilio, "Mitigação de Efeito Flicker por Meio de Compensação Série do Tipo Indutância Negativa Utilizando Inversor Multinível", Eletrônica de Potência, vol. 13, no. 3, pp. 147-153, August/2008. https://doi.org/10.18618/REP.2008.3.147153 DOI: https://doi.org/10.18618/REP.2008.3.147153
W. Komatsu, C. J. Oliveira Jr., P. S. V. Carvalho, "Direct Water Heater Power Control for Reduced Harmonics and Flicker Content with Optimized Half-Cycle Power Control", Eletrônica de Potência, vol. 11, no. 3, pp. 175-180, November/2006. https://doi.org/10.18618/REP.2006.3.175180 DOI: https://doi.org/10.18618/REP.2006.3.175180
IEC 61000-4-15 Ed.2, "Electromagnetic Compatibility (EMC) - Part 4-15: Testing and measurement techniques - Section 15: Flickermeter -Functional and design specifications", International Electrotechnical Commission, August/2010.
Working Group C4.108, "Review of Flickermeter Objectives for LV, MV, and HV Systems", CIGRE Technical Brochure 449, February/2001.
W. Xu, "Deficiency of the Flicker Mater for Measuring Interharmonic-Caused Voltage Flickers", in 2005 IEEE Power Engineering Society General Meeting, vol. 3, pp. 2326-2329, 2005.
T. Tayjasanant, W. Wang, C. Li, W. Xu, "Interharmonic-Flicker Curves", IEEE Transactions on Power Delivery, vol. 20, no.2, pp. 1017-1024, April/2005. https://doi.org/10.1109/TPWRD.2004.838639 DOI: https://doi.org/10.1109/TPWRD.2004.838639
T. Kim, M. Rylander, E. J. Powers, W. M. Grady, A. Arapostathis, "Detection of Flicker Caused by Interharmonics", IEEE Transaction on Instrumentation and Measurement, vol. 58, no.1, pp. 152-160, January/2009. https://doi.org/10.1109/TIM.2008.928413 DOI: https://doi.org/10.1109/TIM.2008.928413
J. Yong, T. Tayjasanant, W. Xu, C. Sun, "Characterizing Voltage Fluctuations Caused by a Pair of Interharmonics" IEEE Transactions on Power Delivery, vol. 23, no. 1, pp. 319-327, January/2008. https://doi.org/10.1109/TPWRD.2007.911129 DOI: https://doi.org/10.1109/TPWRD.2007.911129
K. Zhao, P. Ciufo, S. Perera, "Rectifier Capacitor Filter Stress Analysis When Subject to Regular Voltage Fluctuations", IEEE Transactions on Power Instruments, vol. 28, no. 7, pp. 3627-3635, July/2013. https://doi.org/10.1109/TPEL.2012.2228279 DOI: https://doi.org/10.1109/TPEL.2012.2228279
T. Keppler, N. Watson, J. Arrillaga, "Computation of the short-term flicker severity index", IEEE Transactions on Power Delivery, vol. 15, no. 4, pp. 1110-1115, October/2000. https://doi.org/10.1109/61.891490 DOI: https://doi.org/10.1109/61.891490
H. Shyh-Jier, L. Chen-Wen, "Enhancement of digital equivalent voltage flicker measurement via continuous wavelet transform",IEEE Transactions on Power Delivery, vol. 19, no.2, pp. 663-670, April/2004. https://doi.org/10.1109/TPWRD.2003.820174 DOI: https://doi.org/10.1109/TPWRD.2003.820174
M. Szlosek, B. Swiqtek, Z. Hanzelka, A. Bien, "Application of neural networks to voltage fluctuations measurement-a proposal for a new flickermeter", in11th International Conference on Harmonics and Quality of Power, pp. 403-407, 2004.
A. Zargari, P. Moallem, A. Kiyoumarsi, "Studying and Improvement of Operation of IEC Flickermeter", in18th Electrical Engineering (ICEE), pp. 925-931, 2010. https://doi.org/10.1109/IRANIANCEE.2010.5506944 DOI: https://doi.org/10.1109/IRANIANCEE.2010.5506944
C. Rong, J. F. G. Cobben, J. M. A. Myrzik, J. H. Blom, W. L. Kling, "Flickermeter Used for Different Types of Lamps", in 2007 Electrical Power Quality and Utilisation (EPQU'11), pp. 1-6, 2007. https://doi.org/10.1109/EPQU.2007.4424241 DOI: https://doi.org/10.1109/EPQU.2007.4424241
A. E. Emanuel, L. Peretto, "A Simple Lamp-Eye-Brain Model for Flicker Observations", IEEE Transactions on Power Delivery, vol. 19, no. 3, pp. 1308-1313, July/2004. https://doi.org/10.1109/TPWRD.2004.829930 DOI: https://doi.org/10.1109/TPWRD.2004.829930
L. Peretto, E. Pivello, R. Tinarelli, A. E. Emanuel, "Theoretical Analysis of the Physiologic Mechanism of Luminous Variation in Eye-Brain System", IEEE Transactions on Instrumentations and Measurement, vol. 56, no. 1, pp. 164-170, February/2007. https://doi.org/10.1109/TIM.2006.887223 DOI: https://doi.org/10.1109/TIM.2006.887223
L. Peretto, C. E. Riva, L. Rovati, G. Salvatori, R. Tinarelli, "Analysis of the Effects of Flicker on the Blood-Flow Variation in the Human Eye", IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 9, pp. 2916-2922, September/2009. https://doi.org/10.1109/TIM.2009.2016773 DOI: https://doi.org/10.1109/TIM.2009.2016773
M. G. Masi, L. Peretto, R. Tinarelli, "Flicker Effect Analysis in Human Subjects: New Noninvasive Method for Next-Generation Flickermeter", IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 9, pp. 3018-3025, September/2011. https://doi.org/10.1109/TIM.2011.2158147 DOI: https://doi.org/10.1109/TIM.2011.2158147
J. R Macedo Jr., D. S. L. Simonetti, "Análise de desempenho do flickermeter na presença de componentes inter-harmônicas". Sba Controle & Automação, vol. 23, no. 4, pp. 508-519, Agosto/2012. https://doi.org/10.1590/S0103-17592012000400010 DOI: https://doi.org/10.1590/S0103-17592012000400010
G. P. Colnago, J. R. Macedo Jr., J. L. F. Vieira, "Development and implementation of a flickermeter with luminous flux variation measurement". Eletrônica de Potência, vol. 18, no. 4, pp. 1235-1244, November/2013. https://doi.org/10.18618/REP.2013.4.12351244 DOI: https://doi.org/10.18618/REP.2013.4.12351244
L. W. White, S. Bhattacharya, "A Discrete Matlab-Simulink Flickermeter Model for Power Quality Studies", IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 3, pp. 527-533, March/2010. https://doi.org/10.1109/TIM.2009.2023121 DOI: https://doi.org/10.1109/TIM.2009.2023121
IEC 61000-2-1: 1990, Ed. 1, "Electromagnetic Compatibility (EMC) - Part 2: Environment - Section 1: Description of the Environment - Electromagnetic environment for low-frequency conducted disturbances and signaling in public power supply systems", International Electrotechnical Commission, May/1990.
IEEE Std. 1453-2004, "IEEE Power Engineering Society - IEEE Recommended Practice for Measurement and Limits of Voltage Fluctuations and Associated Light Flicker on AC Power Systems", March/2005.
A. Testa, M. F. Akran, R. Burch, G. Carpinelli, G. Chang, V. Dinavahi, C. Hatziadoniu, W. M. Grady, E. Gunther, M. Halpin, P. Lehn, Y. Liu, R. Langella, M. Lowenstein, A. Medina, T. Ortmeyer, S. Ranade, P. Ribeiro, N. Watson, J. Wikston, W. Xu, "Interharmonics: Theory and Modeling - IEEE Task Force on Harmonics Modeling and Simulation", IEEE Transactions on Power Delivery, vol.22, no.4, pp. 2335-2348, October/2007. https://doi.org/10.1109/TPWRD.2007.905505 DOI: https://doi.org/10.1109/TPWRD.2007.905505
C. May, E. R. Collins, "An investigation of the response of incandescent lamps and compact fluorescent lamps to voltage fluctuations", in 14th International Conference on Harmonics and Quality of Power (ICHQP), pp. 1-8, 2010. https://doi.org/10.1109/ICHQP.2010.5625426 DOI: https://doi.org/10.1109/ICHQP.2010.5625426
Y. N. Chang, C. C. Hung, "Electronic Ballast with Constant Instantaneous Power Output for Fluorescent Lamps without Light Fluctuation", in 2007 Power Conversion Conference (PCC'07), pp. 721-726, 2007. https://doi.org/10.1109/PCCON.2007.373046 DOI: https://doi.org/10.1109/PCCON.2007.373046
S. Uddin, H. Shareef, A. Mohamed, M. A. Hannan, "Analysis of Voltage Sag Sensitivity of LED Lamps", in 2012 IEEE International Conference on Power and Energy (PECon), pp. 667-670, 2012. https://doi.org/10.1109/PECon.2012.6450299 DOI: https://doi.org/10.1109/PECon.2012.6450299
C. K. Lee, S. Li, S. Y. Hui, "A Design Methodology for Smart LED Lighting Systems Powered By Weakly Regulated Renewable Power Grids", IEEE Transactions on Smart Grids, vol. 2, no. 3, pp. 548-554, September/2011. https://doi.org/10.1109/TSG.2011.2159631 DOI: https://doi.org/10.1109/TSG.2011.2159631
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Revista Eletrônica de Potência
This work is licensed under a Creative Commons Attribution 4.0 International License.