Metodologia de Projeto Generalizada para o Conversor Dab

Authors

  • André Luís Kirsten GEDRE, Universidade Federal de Santa Maria (UFSM)
  • Filipe Gabriel Carloto GEDRE, Universidade Federal de Santa Maria (UFSM)
  • Theyllor Hentschke de Oliveira GEDRE, Universidade Federal de Santa Maria (UFSM)
  • João Gilberto Pinheiro Roncalio GEDRE, Universidade Federal de Santa Maria (UFSM)
  • Marco Antônio Dalla Costa GEDRE, Universidade Federal de Santa Maria (UFSM)

DOI:

https://doi.org/10.18618/REP.2014.3.231240

Keywords:

Comutação Suave, Conversor DAB, Conversores CC-CC, Elevada densidade de potência

Abstract

O conversor DAB (dual active bridge) apresenta características desejáveis para diversas aplicações, como: comutação suave em todos os interruptores, característica elevadora e abaixadora de tensão, estrutura simples, fluxo bidirecional de energia e elevada eficiência. A modulação por deslocamento de fase é a mais utilizada para este conversor devido sua simplicidade. Para esta modulação, o conversor apresenta comutação suave em uma ampla faixa de operação. Entretanto, a potência reativa necessária para isso reduz a eficiência do conversor, principalmente em condições de potência nominal. Este artigo tem como objetivo apresentar uma metodologia de projeto que utiliza a relação entre a potência reativa e ativa do conversor DAB como um fator de desempenho, e visa demonstrar como a definição do ângulo de defasagem nominal influencia na operação do conversor. Resultados experimentais são apresentados de modo a comprovar as análises discutidas ao longo do artigo.

Downloads

Download data is not yet available.

Author Biographies

André Luís Kirsten, GEDRE, Universidade Federal de Santa Maria (UFSM)

nascido em Santa Maria (RS), em 1986. Possui graduação (2009), mestrado (2011) e doutorado (2014) em Engenharia Elétrica pela Universidade Federal de Santa Maria (UFSM). Atualmente é Professor Adjunto da UFSM e coordenador do curso de Engenharia Elétrica do campus de Cachoeira do Sul – RS. Atua como pesquisador no Grupo de pesquisa GEDRE. Suas áreas de interesse são: eletrônica de potência, reatores eletrônicos, sistemas fotovoltaicos e transformadores de estado sólido.

Filipe Gabriel Carloto, GEDRE, Universidade Federal de Santa Maria (UFSM)

nascido em Mata (RS), em 1994. Graduando em Engenharia Elétrica desde 2012 pela UFSM. Atualmente é membro do Grupo de Estudo e Desenvolvimento de Reatores Eletrônicos (GEDRE), atuando como Bolsista de Iniciação Científica. Tem como principais linhas de pesquisa eletrônica de potência, eficiência de circuitos eletrônicos e transformadores de estado sólido.

Theyllor Hentschke de Oliveira, GEDRE, Universidade Federal de Santa Maria (UFSM)

nascido em Santa Maria - RS em 1991. Formado em Eletrotécnica pelo Colégio Técnico Industrial de Santa Maria (CTISM) em 2010. Graduando em Engenharia Elétrica pela UFSM desde 2011. Atualmente é membro do grupo GEDRE, atuando como Bolsista de Iniciação Científica (Probit). Seus tópicos de interesse incluem: conversores estáticos, lâmpadas de descarga de alta pressão e transformadores de estado sólido.

João Gilberto Pinheiro Roncalio, GEDRE, Universidade Federal de Santa Maria (UFSM)

nascido em 1990 em Passo Fundo, Brasil, é graduando em Engenharia Elétrica pela UFSM desde 2009. É membro do grupo GEDRE – Inteligência em Iluminação. Suas áreas de interesse são: eletrônica de potência, iluminação de estado sólido (LEDs), sistemas de iluminação e conversores CC-CC.

Marco Antônio Dalla Costa, GEDRE, Universidade Federal de Santa Maria (UFSM)

nascido em 03/10/1978 em Santa Maria – RS, possui graduação em Engenharia Elétrica e Mestrado em Eletrônica de Potência pela Universidade Federal de Santa Maria (2002 e 2004, respectivamente). Finalizou o curso de doutorado na Universidad de Oviedo - Espanha em fevereiro de 2008. Desde 2009 é Professor Adjunto na UFSM. Tem experiência na área de Engenharia Elétrica, com ênfase em Eletrônica de Potência, atuando principalmente nos seguintes temas: circuitos de alimentação de LEDs, reatores eletrônicos para lâmpadas de descarga, comando auto-oscilante, dimming de lâmpadas de descarga de alta e baixa pressão, ressonâncias acústicas, eficiência de circuitos eletrônicos, fontes alternativas de energia e transformadores de estado sólido.

References

R. W. A. A. De Doncker, D. M. Divan, and M. H. Kheraluwala, "A three-phase soft-switched high-power-density DC/DC converter for high-power applications," IEEE Trans. Ind. Appl., vol. 27, no. 1, pp. 63-73, 1991. https://doi.org/10.1109/28.67533 DOI: https://doi.org/10.1109/28.67533

M. N. Kheraluwala, R. W. Gascoigne, D. M. Divan, and E. D. Baumann, "Performance characterization of a high-power dual active bridge DC-to-DC converter," IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1294-1301, 1992. https://doi.org/10.1109/28.175280 DOI: https://doi.org/10.1109/28.175280

E. C. Aeloiza, P. N. Enjeti, L. A. Moran, and I. Pitel, "Next generation distribution transformer: to address power quality for critical loads," in Power Electronics Specialist Conference, 2003. PESC '03. 2003 IEEE 34th Annual, 2003, vol. 3, pp. 1266-1271 vol.3.

S. Bifaretti, P. Zanchetta, A. Watson, L. Tarisciotti, and J. C. Clare, "Advanced Power Electronic Conversion and Control System for Universal and Flexible Power Management," IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 231-243, 2011. https://doi.org/10.1109/TSG.2011.2115260 DOI: https://doi.org/10.1109/TSG.2011.2115260

B. Cougo, T. Meynard, and H. Schneider, "Reconfigurable dual active bridge converter for aircraft applications," in Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), 2012, 2012, pp. 1-6. https://doi.org/10.1109/ESARS.2012.6387454 DOI: https://doi.org/10.1109/ESARS.2012.6387454

R. T. Naayagi, A. J. Forsyth, and R. Shuttleworth, "Bidirectional control of a dual active bridge DC-DC converter for aerospace applications," IET Power Electron., vol. 5, no. 7, pp. 1104-1118, 2012. https://doi.org/10.1049/iet-pel.2011.0278 DOI: https://doi.org/10.1049/iet-pel.2011.0278

R. T. Naayagi, A. J. Forsyth, and R. Shuttleworth, "High-Power Bidirectional DC-DC Converter for Aerospace Applications," IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4366-4379, 2012. https://doi.org/10.1109/TPEL.2012.2184771 DOI: https://doi.org/10.1109/TPEL.2012.2184771

R. Mirzahosseini and F. Tahami, "A lifetime improved single phase grid connected photovoltaic inverter," in Power Electronics and Drive Systems Technology (PEDSTC), 2012 3rd, 2012, pp. 234-238. https://doi.org/10.1109/PEDSTC.2012.6183332 DOI: https://doi.org/10.1109/PEDSTC.2012.6183332

M. A. Moonem and H. Krishnaswami, "Analysis and control of multi-level dual active bridge DC-DC converter," in 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 1556-1561. https://doi.org/10.1109/ECCE.2012.6342628 DOI: https://doi.org/10.1109/ECCE.2012.6342628

I. Syed and W. Xiao, "Modeling and control of DAB applied in a PV based DC microgrid," in 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2012, pp. 1-6. https://doi.org/10.1109/PEDES.2012.6484489 DOI: https://doi.org/10.1109/PEDES.2012.6484489

Z. Haihua and A. M. Khambadkone, "HybridModulation for Dual Active Bridge Bi-Directional Converter With Extended Power Range For Ultracapacitor Application," in IEEE Industry Applications Society Annual Meeting, 2008. IAS '08, 2008, pp. 1-8.

F. Krismer, J. Biela, and J. W. Kolar, "A comparative evaluation of isolated bi-directional DC/DC converters with wide input and output voltage range," presented at the Industry Applications Conference., 2005, vol. 1, pp. 599-606 Vol. 1.

T. Ngo, J. Won, and K. Nam, "A single-phase bidirectional dual active half-bridge converter," in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012, pp. 1127-1133. https://doi.org/10.1109/APEC.2012.6165960 DOI: https://doi.org/10.1109/APEC.2012.6165960

N. M. L. Tan, T. Abe, and H. Akagi, "Design and Performance of a Bidirectional Isolated DC-DC Converter for a Battery Energy Storage System," IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2012. https://doi.org/10.1109/TPEL.2011.2108317 DOI: https://doi.org/10.1109/TPEL.2011.2108317

M. Steiner and H. Reinold, "Medium frequency topology in railway applications," in 2007 European Conference on Power Electronics and Applications, 2007, pp. 1-10. https://doi.org/10.1109/EPE.2007.4417570 DOI: https://doi.org/10.1109/EPE.2007.4417570

H. van Hoek, M. Neubert, and R. W. De Doncker, "Enhanced Modulation Strategy for a Three-Phase Dual Active Bridge - Boosting Efficiency of an Electric Vehicle Converter," IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5499-5507, 2013. https://doi.org/10.1109/TPEL.2013.2251905 DOI: https://doi.org/10.1109/TPEL.2013.2251905

J. L. Duarte, M. Hendrix, and M. G. Simoes, "Three-Port Bidirectional Converter for Hybrid Fuel Cell Systems," IEEE Trans. Power Electron., vol. 22, no. 2, pp. 480-487, Mar. 2007. https://doi.org/10.1109/TPEL.2006.889928 DOI: https://doi.org/10.1109/TPEL.2006.889928

F. Krismer and J. W. Kolar, "Accurate Power Loss Model Derivation of a High-Current Dual Active Bridge Converter for an Automotive Application," IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 881-891, 2010. https://doi.org/10.1109/TIE.2009.2025284 DOI: https://doi.org/10.1109/TIE.2009.2025284

J. Everts, F. Krismer, J. Van den Keybus, J. Driesen, and J. W. Kolar, "Optimal ZVS Modulation of Single-Phase Single-Stage Bidirectional DAB AC-DC Converters," IEEE Trans. Power Electron., vol. 29, no. 8, pp. 3954-3970, Aug. 2014. https://doi.org/10.1109/TPEL.2013.2292026 DOI: https://doi.org/10.1109/TPEL.2013.2292026

N. D. Weise, G. Castelino, K. Basu, and N. Mohan, "A Single-Stage Dual-Active-Bridge-Based Soft Switched AC-DC Converter With Open-Loop Power Factor Correction and Other Advanced Features," IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4007-4016, Aug. 2014. https://doi.org/10.1109/TPEL.2013.2293112 DOI: https://doi.org/10.1109/TPEL.2013.2293112

B. Zhao, Q. Song, W. Liu, and Y. Sun, "Overview of Dual-Active-Bridge Isolated Bidirectional DC-DC Converter for High-Frequency-Link Power-Conversion System," IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4091-4106, Aug. 2014. https://doi.org/10.1109/TPEL.2013.2289913 DOI: https://doi.org/10.1109/TPEL.2013.2289913

D. Costinett, D. Maksimovic, and R. Zane, "Design and Control for High Efficiency in High Step-Down Dual Active Bridge Converters Operating at High Switching Frequency," IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3931-3940, 2013. https://doi.org/10.1109/TPEL.2012.2228237 DOI: https://doi.org/10.1109/TPEL.2012.2228237

B. Zhao, Q. Song, and W. Liu, "Power Characterization of Isolated Bidirectional Dual-Active-Bridge DC-DC Converter With Dual-Phase-Shift Control," IEEE Trans. Power Electron., vol. 27, no. 9, pp. 4172-4176, 2012. https://doi.org/10.1109/TPEL.2012.2189586 DOI: https://doi.org/10.1109/TPEL.2012.2189586

A. K. Jain and R. Ayyanar, "PWM Control of Dual Active Bridge: Comprehensive Analysis and Experimental Verification," IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1215-1227, 2011. https://doi.org/10.1109/TPEL.2010.2070519 DOI: https://doi.org/10.1109/TPEL.2010.2070519

G. Ortiz, H. Uemura, D. Bortis, J. W. Kolar, and O. Apeldoorn, "Modeling of Soft-Switching Losses of IGBTs in High-Power High-Efficiency Dual-Active-Bridge DC/DC Converters," IEEE Trans. Electron Devices, vol. 60, no. 2, pp. 587-597, 2013. https://doi.org/10.1109/TED.2012.2223215 DOI: https://doi.org/10.1109/TED.2012.2223215

B. Zhao, Q. Song, and W. Liu, "Efficiency Characterization and Optimization of Isolated Bidirectional DC-DC Converter Based on Dual-Phase-Shift Control for DC Distribution Application," IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1711-1727, 2013. https://doi.org/10.1109/TPEL.2012.2210563 DOI: https://doi.org/10.1109/TPEL.2012.2210563

F. Krismer and J. W. Kolar, "Closed Form Solution for Minimum Conduction Loss Modulation of DAB Converters," IEEE Trans. Power Electron., vol. 27, no. 1, pp. 174-188, 2012. https://doi.org/10.1109/TPEL.2011.2157976 DOI: https://doi.org/10.1109/TPEL.2011.2157976

S. Inoue and H. Akagi, "A Bidirectional Isolated DC-DC Converter as a Core Circuit of the Next-Generation Medium-Voltage Power Conversion System," IEEE Trans. Power Electron., vol. 22, no. 2, pp. 535-542, 2007. https://doi.org/10.1109/TPEL.2006.889939 DOI: https://doi.org/10.1109/TPEL.2006.889939

H. Bai and C. Mi, "Eliminate Reactive Power and Increase System Efficiency of Isolated Bidirectional Dual-Active-Bridge DC-DC Converters Using Novel Dual-Phase-Shift Control," IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2905-2914, 2008. https://doi.org/10.1109/TPEL.2008.2005103 DOI: https://doi.org/10.1109/TPEL.2008.2005103

H. Bai, Z. Nie, and C. C. Mi, "Experimental Comparison of Traditional Phase-Shift, Dual-Phase-Shift, and Model-Based Control of Isolated Bidirectional DC-DC Converters," IEEE Trans. Power Electron., vol. 25, no. 6, pp. 1444-1449, 2010. https://doi.org/10.1109/TPEL.2009.2039648 DOI: https://doi.org/10.1109/TPEL.2009.2039648

B.-Y. Chen and Y.-S. Lai, "Switching Control Technique of Phase-Shift-Controlled Full-Bridge Converter to Improve Efficiency Under Light-Load and Standby Conditions Without Additional Auxiliary Components," IEEE Trans. Power Electron., vol. 25, no. 4, pp. 1001-1012, 2010. https://doi.org/10.1109/TPEL.2009.2033069 DOI: https://doi.org/10.1109/TPEL.2009.2033069

G. G. Oggier, G. O. García, and A. R. Oliva, "Modulation Strategy to Operate the Dual Active Bridge DC-DC Converter Under Soft Switching in the Whole Operating Range," IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1228-1236, 2011. https://doi.org/10.1109/TPEL.2010.2072966 DOI: https://doi.org/10.1109/TPEL.2010.2072966

G. G. Oggier, G. O. Garcia, and A. R. Oliva, "Switching Control Strategy to Minimize Dual Active Bridge Converter Losses," IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1826-1838, 2009. https://doi.org/10.1109/TPEL.2009.2020902 DOI: https://doi.org/10.1109/TPEL.2009.2020902

Y. Xie, J. Sun, and J. S. Freudenberg, "Power Flow Characterization of a Bidirectional Galvanically Isolated High-Power DC/DC Converter Over a Wide Operating Range," IEEE Trans. Power Electron., vol. 25, no. 1, pp. 54-66, 2010. https://doi.org/10.1109/TPEL.2009.2024151 DOI: https://doi.org/10.1109/TPEL.2009.2024151

D. Xu, C. Zhao, and H. Fan, "A PWM plus phase-shift control bidirectional DC-DC converter," IEEE Trans. Power Electron., vol. 19, no. 3, pp. 666-675, 2004. https://doi.org/10.1109/TPEL.2004.826485 DOI: https://doi.org/10.1109/TPEL.2004.826485

A. R. Alonso, J. Sebastian, D. G. Lamar, M. M. Hernando, and A. Vazquez, "An overall study of a Dual Active Bridge for bidirectional DC/DC conversion," in 2010 IEEE Energy Conversion Congress and Exposition (ECCE), 2010, pp. 1129-1135.

S. Fryze, "Active, reactive and apparent power in circuits with nonsinusoidal voltage and current," Przegl.Elektrotech, 1932.

A. Emanuel, "Summary of IEEE standard 1459: definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, or unbalanced conditions," IEEE Trans. Ind. Appl., vol. 40, no. 3, pp. 869-876, May 2004. https://doi.org/10.1109/TIA.2004.827452 DOI: https://doi.org/10.1109/TIA.2004.827452

Published

2014-08-31

How to Cite

[1]
A. L. Kirsten, F. G. Carloto, T. H. de Oliveira, J. G. P. Roncalio, and M. A. D. Costa, “Metodologia de Projeto Generalizada para o Conversor Dab”, Eletrônica de Potência, vol. 19, no. 3, pp. 231–240, Aug. 2014.

Issue

Section

Original Papers