Application of Some Artificial Intelligence Techniques in Induction Motor Fault Diagnosis
DOI:
https://doi.org/10.18618/REP.20113.241248Keywords:
Artificial Intelligence Methods, Diagnosis Technique, Induction Motor Fault DiagnosisAbstract
In spite of the advantages of the use of the induction motor in a large number industrial applications, various stresses natures like thermal, electrical, mechanical or environmental could affect the life span of this induction motor drive. In recent years, monitoring and fault detection of electrical machines have moved from traditional techniques to artificial intelligence techniques. This paper gives examples of application of nine AI techniques already applied to induction motor fault diagnosis: neural networks, fuzzy logic, neural-fuzzy, genetic algorithms, vector support machine, particle swarm optimization, artificial immune system and gaussian bootstrap process. Functions that can be accomplished by them are highlighted.
Downloads
References
F.W. Fuchs. Some diagnosis methods for voltage source inverters in variable speed drives with induction machines - A Survey. IEEE Ind. Electron. Conf., 1378-1385, 2003. https://doi.org/10.1109/IECON.2003.1280259 DOI: https://doi.org/10.1109/IECON.2003.1280259
Z. Ye and B. Wu, A Review on Induction Motor Online Fault Diagnosis, Proceedings of the Power Electronics and Motion International Conference, PEMC 2000, 1353-1358. https://doi.org/10.1109/IPEMC.2000.883050 DOI: https://doi.org/10.1109/IPEMC.2000.883050
F. Filippetti, G Franceschini, C. Tassoni and P. Vas. AI Techniques in Induction Machines Diagnosis Including the Speed Ripple Effect. IEEE Trans. on Ind. Applications, vol. 34 (1): 98-108, 1998. https://doi.org/10.1109/28.658729 DOI: https://doi.org/10.1109/28.658729
M.A Awadalla and M.M. Morcos, Application of AI Tools in Fault Diagnosis of Electrical Machines and Drives-An Overview. IEEE Transactions on Energy Conversion, vol. 18 (2): 245-252, 2003. https://doi.org/10.1109/TEC.2003.811739 DOI: https://doi.org/10.1109/TEC.2003.811739
A. Siddique, G.S. Yadava and B. Singh. Applications of Artificial Intelligence Techniques for Induction Machine Stator Fault Diagnostics: Review. Proceedings ofSDEMPED ́03, 29-34, 2003. https://doi.org/10.1109/DEMPED.2003.1234543 DOI: https://doi.org/10.1109/DEMPED.2003.1234543
S. Qiang, X.Z. Gao and X. Zhuang, State-of-the-art in Soft Computing-based Motor Fault Diagnosis. Proceedings of CAC, 381-1386, 2003. https://doi.org/10.1109/CCA.2003.1223214 DOI: https://doi.org/10.1109/CCA.2003.1223214
Y.B. Ivonne, D. Sun and Y.K. He. Fault Diagnosis Using Neural-Fuzzy Technique Based on the Simulation Results of Stator Faults for a Three-Phase Induction Motor Drive System. Proceedings of ICEMS, 1966-1971, 2005. https://doi.org/10.1109/ICEMS.2005.202904 DOI: https://doi.org/10.1109/ICEMS.2005.202904
V. Rajogopalan, K. Debebe and T.S. Sankar. Expert system for fault diagnosis of VSI fed AC drives. IEEE-IAS Annual. Meeting, Dearborn, 368-373, 1991. https://doi.org/10.1109/IAS.1991.178181 DOI: https://doi.org/10.1109/IAS.1991.178181
L.M.R. Baccarini. Detecção e Diagnóstico de Falhas em Motores de Indução. Ph.D. thesis. UFMG, 2005.
R.A. Teixeira, A.P. Braga, R.H.C. Takahashi and R.R. Saldanha. Decisor implementation in neural model selection by multiobjective optimization. Proceedings of SBRN, 234-239, 2002. https://doi.org/10.1109/SBRN.2002.1181480 DOI: https://doi.org/10.1109/SBRN.2002.1181480
W.M. Caminhas, D.A.G. Vieira and J.A. Vasconcelos. Parallel layer perceptron. Neurocomputing, 771 - 778, 2003. https://doi.org/10.1016/S0925-2312(03)00440-5 DOI: https://doi.org/10.1016/S0925-2312(03)00440-5
F. Yoshikazu and Y. Ueki. Fault Analysis System Using Neural Networks and Artificial Intelligence. Proceedinsg of IEEE ANNPS ́03, 20-25, 2003. https://doi.org/10.1109/ANN.1993.264355 DOI: https://doi.org/10.1109/ANN.1993.264355
S. Altug S., Mo-Yuen Chen and H. J. Trussell,. Fuzzy inference systems implemented on neural architectures for motor fault detection and diagnosis. IEEE Trans. on Industrial Electronics, 1079-1079, 1999. https://doi.org/10.1109/41.807988 DOI: https://doi.org/10.1109/41.807988
S.M. Namburu, S. Chigusa, D. Prokhorov, L. Qiao, K. Choi and K, Pattipati, Application of an Effective Data-Driven Approach to Real-time Fault Diagnosis in Automotive Engines. Proceedings of the IEEE AC, pages 1-9, 2007. https://doi.org/10.1109/AERO.2007.352874 DOI: https://doi.org/10.1109/AERO.2007.352874
I. Aydin, M. Kakaköse and E. Akin. Artificial Immune Based Support Vector Machine Algorithm for Fault Diagnosis of Induction Motors, Proceedings of ACEMP, 217-221, 2007. https://doi.org/10.1109/ACEMP.2007.4510505 DOI: https://doi.org/10.1109/ACEMP.2007.4510505
S.F. Yuan and F.L. Chu. Fault diagnostics based on particle swarm optimization and support vector machines. Mechanical Systems and Signal Processing, vol. 21: 1787-1798, 2007. https://doi.org/10.1016/j.ymssp.2006.07.008 DOI: https://doi.org/10.1016/j.ymssp.2006.07.008
R. Fang, R. and H. Z. Ma. Application of MCSA and SVM to Induction Machine Rotor Fault Diagnosis. Proceedings of the 6th World Congress on Intelligent Control and Automation, vol. 2, 5543-5547, 2006. https://doi.org/10.1109/WCICA.2006.1714134 DOI: https://doi.org/10.1109/WCICA.2006.1714134
E. Mayoraz and E.Alpaydin, Support Vector Machines for Multi-Class Classification. Int. Workshop on Artificial Neural Networks, vol. 2 (4): 833-842, 1999. https://doi.org/10.1007/BFb0100551 DOI: https://doi.org/10.1007/BFb0100551
J. Kurek, and S. Osowski. Support Vector Machine for Diagnosis of the Bars of Cage Inductance Motor. Proceeding of International Conference on Embedded Software and Systems - ICESS'08, 1022-1025, 2008. https://doi.org/10.1109/ICECS.2008.4675030 DOI: https://doi.org/10.1109/ICECS.2008.4675030
E. Ortiz and V. Syrmos. Support vector machines and wavelet packet analysis for fault detection and identification. Int. Joint Conf. on Neural Networks, Vancouver, 3449-3456, 2006. https://doi.org/10.1109/IJCNN.2006.247349 DOI: https://doi.org/10.1109/IJCNN.2006.247349
A. Rojas and A.K. Nandi. Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines. Mech. Systems and Signal Processing, vol.20:1523-1536, 2006. https://doi.org/10.1016/j.ymssp.2005.05.002 DOI: https://doi.org/10.1016/j.ymssp.2005.05.002
L.M.R. Baccarini, V. V. R e Silva, B. R. de Menezes, W. M. Caminhas, SVM practical industrial application for mechanical faults diagnostic, Expert Systems with Applications, vol. 38: 6980-6984, 2011. https://doi.org/10.1016/j.eswa.2010.12.017 DOI: https://doi.org/10.1016/j.eswa.2010.12.017
S. Poyhonen, M. Negrea, A. Arkkio, H. Yotyniemi, and H. Koivo. Support Vector Classification for Fault Diagnosis of in Electrical Machine, Proceedings of ICSP'02, 1719-1722, 2002. https://doi.org/10.1109/ICOSP.2002.1180133 DOI: https://doi.org/10.1109/ICOSP.2002.1180133
G. Cvetkoski, L. Petkovsk, and M. Cundev. Mathematical model of a permanent magnet axial field synchronous motor for a genetic algorithm optimization. Proceedings of ICEM, 1172-1177, 1998.
H. Razik, M.B.R. Corrêa and E.R.C. Silva. An application of Genetic Algorithm and Fuzzy Logic for the induction motor diagnosis. Proceedings of IECON, 3067-3072, 2008. https://doi.org/10.1109/IECON.2008.4758450 DOI: https://doi.org/10.1109/IECON.2008.4758450
H.Razik, M.B.R. Corrêa, and E.R.C. Silva. A Novel Monitoring of Load Level and Broken Bar Fault Severity Applied to Squirrel-Cage Induction Motors Using a Genetic Algorithm. IEEE Transactions on Industrial Electronics, vol. 56 (11), 4615-4626, 2009. https://doi.org/10.1109/TIE.2009.2029580 DOI: https://doi.org/10.1109/TIE.2009.2029580
L. Cristaldi, M. Lazzaroni, A. Monti, F. Ponci and F. Zocchi. A Genetic Algorithm for fault identification in electrical drives: a comparison with Neuro-Fuzzy computation. Instrumentation and Measurement Technology Conference, vol. 2, 1454-1459, 2004. https://doi.org/10.1109/IMTC.2004.1351341 DOI: https://doi.org/10.1109/IMTC.2004.1351341
D. Wei, L. Zhan-sheng and W. Dong-hua. Combination Diagnosis Based on Genetic Algorithm for Rotating Machinery. Proceedings of 3th International Conference on Natural Computation, 307-309, 2007. https://doi.org/10.1109/ICNC.2007.304 DOI: https://doi.org/10.1109/ICNC.2007.304
T. Han, B.-Suk, Y. and J. M. Lee. A New Condition Monitoring and Fault Diagnosis System of Induction Motors using Artificial Intelligence Algorithms. Proceedings of IEMDC 2005, pages 1967-1974. https://doi.org/10.1109/IEMDC.2005.195989 DOI: https://doi.org/10.1109/IEMDC.2005.195989
J. Kennedy and R. Eberhart. Particle Swarm Optimization. IEEE International Conference on Neural Networks, 1942-1948, 1995. https://doi.org/10.1109/ICNN.1995.488968 DOI: https://doi.org/10.1109/ICNN.1995.488968
H. Razik, M.B.R. Corrêa, and E.R.C.Silva. The use of particle swarm optimization for the tracking of Induction motor faulty lines. Proceedings of IEEE PowerEng'09, pages 680-684, 2009. https://doi.org/10.1109/POWERENG.2009.4915160 DOI: https://doi.org/10.1109/POWERENG.2009.4915160
G. Ciuprina, D. Loan and I. Munteanu. Use of intelligent-particle swarm optimization in electromagnetic. IEEE Trans. Magnetics, vol. 38: 1037-1040, 2002. https://doi.org/10.1109/20.996266 DOI: https://doi.org/10.1109/20.996266
M. Clerc. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization. Proceedings ofIEEE Congress on Evolutionary Computation, 1951-1957, 1999. https://doi.org/10.1109/CEC.1999.785513 DOI: https://doi.org/10.1109/CEC.1999.785513
Y. Shi and R.C. Eberhart. Empirical Study of Particle Swarm Optimization. Proc. oftheIEEE Congress on Evolutionary Computation, 1945-1950, 1999. https://doi.org/10.1109/CEC.1999.785511 DOI: https://doi.org/10.1109/CEC.1999.785511
B. Liu, L. Wang, Y-H Jin, F. Tang and D.X. Huang. Improved particle swarm optimization combined with chaos. Elsevier Chaos, Solutions and Fractals, vol. 25(5): 1261-1271, 2005. https://doi.org/10.1016/j.chaos.2004.11.095 DOI: https://doi.org/10.1016/j.chaos.2004.11.095
S. Ethny, P.P Acarnley, B. Zahawi and D. Giaouris. Induction Machine Fault Identification using Particle Swarm Algorithms. PEDES, 1-4, 2006. https://doi.org/10.1109/PEDES.2006.344310 DOI: https://doi.org/10.1109/PEDES.2006.344310
D. Wei, L. Zhan-sheng and W. Xiaowei. Application of Image Recognition Based on Artificial Immune in Rotating Machinery Fault Diagnosis. Proceedings of International Conference on Bio-information and Biomedical Engineering, 1047-1052, 2007. https://doi.org/10.1109/ICBBE.2007.271 DOI: https://doi.org/10.1109/ICBBE.2007.271
L.N. de Castro and J. Timmis. Artificial Immune Systems: A New Computational Intelligence Approach. Springer Verlag, New York, 2002.
X. Wen, D.J.Brown, Q. Liao. Online Motor Fault Diagnosis Using Hybrid Intelligence Techniques, in Proceedings of IEEE ISIF, 355-360, 2010. https://doi.org/10.1109/ISIEA.2010.5679442 DOI: https://doi.org/10.1109/ISIEA.2010.5679442
I. Aydin, M. Karakose, E. Akin. Artificial Immune Inspired Fault Detection Algorithm Based on Fuzzy Clustering and Genetic Algorithm Methods, In IEEE Proceedings of CIMSA, 1-6, 2008 https://doi.org/10.1109/CIMSA.2008.4595840 DOI: https://doi.org/10.1109/CIMSA.2008.4595840
H.C. Kim, D. Kim, Z. Ghahramani,.Z. and S.Y. Bang. Appearance-based gender classification with Gaussian processes. Pattern Recognition Letters, vol. 27: 618-626, 2006. https://doi.org/10.1016/j.patrec.2005.09.027 DOI: https://doi.org/10.1016/j.patrec.2005.09.027
A.M. Zoubir and D.R. Iskander. Bootstrap methods and applications. IEEE Signal Processing Magazine, vol. 24 (4): 10-19, 2007. https://doi.org/10.1109/MSP.2007.4286560 DOI: https://doi.org/10.1109/MSP.2007.4286560
W. Xue, Bi Daowei. D. Liang and W. Sheng. Bootstrap Gaussian Process Classifiers for Rotating Machinery Anomaly Detection. Proceedings of IEEE International Joint Conference on Neural Networks, 1129-1134, 2008. https://doi.org/10.1109/IJCNN.2008.4633941 DOI: https://doi.org/10.1109/IJCNN.2008.4633941
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2011 Revista Eletrônica de Potência
This work is licensed under a Creative Commons Attribution 4.0 International License.