Thermal Management of Led Luminaires Based on Computational Fluid Dynamic

Authors

  • Odirlan Iaronka Electronic Ballast Research Group (GEDRE) – Federal University of Santa Maria (UFSM) Santa Maria – RS, Brazil
  • Vitor Cristiano Bender Electronic Ballast Research Group (GEDRE) – Federal University of Santa Maria (UFSM) Santa Maria – RS, Brazil e-mail: odirlan.ufsm@gmail.com
  • Tiago Bandeira Marchesan Electronic Ballast Research Group (GEDRE) – Federal University of Santa Maria (UFSM) Santa Maria – RS, Brazil e-mail: odirlan.ufsm@gmail.com

DOI:

https://doi.org/10.18618/REP.2015.1.076084

Keywords:

Computational Fluid Dynamic, Cooling System, Finite-Volume Method, Light Emitting Diode, Street Lighting, Thermal Management

Abstract

Large LED (light-emitting diodes) clusters are currently designed to replace the lamps commonly used in parks, roadways, tunnels and street lighting. However, the success of these designs is heavily dependent on the performance of the thermal management. Thermal performance affects light extraction, reliability and lifetime of LED lamp. This paper proposes thermal management solutions to improve the design of LED luminaires. These solutions include natural convection and forced air convection into a closed cooling loop. The LED driver influence on luminaire heating is also evaluated in this paper. Simulations employing Finite-Volume Method (FVM) and Computational Fluid Dynamics (CFD) have been done to analyze the system’s performance and to propose improvements in the airflow design. Comparisons of the experimental and simulation results are presented for validation purposes.

Downloads

Download data is not yet available.

Author Biographies

Odirlan Iaronka, Electronic Ballast Research Group (GEDRE) – Federal University of Santa Maria (UFSM) Santa Maria – RS, Brazil

was born in Casca, Brazil, in 1990. He received the B.S. degree in Electrical Engineering in 2014, in Federal University of Santa Maria (UFSM). In the period of 2009 to 2014 was a researcher in Electronic Ballast Research Group (GEDRE - UFSM). Currently working in the company WEG Electric Equipment, in the Development, Research and Innovation sector. His research interests include Numerical Simulations, Finite Element Method (FEM), Computational Fluids Dynamics (CFD), Thermal Management, LEDs, Power Electrical Transformers and Electromagnetism.

Vitor Cristiano Bender, Electronic Ballast Research Group (GEDRE) – Federal University of Santa Maria (UFSM) Santa Maria – RS, Brazil e-mail: odirlan.ufsm@gmail.com

was born in Panambi, Brazil in 1987. He received the B.S. degree in Electrical Engineering from the Regional University of the Northwest of Rio Grande do Sul in 2011 and Master Degree from Federal University of Santa Maria (UFSM) in 2012, is currently student in the Doctoral Course in (UFSM) working with Electronic Ballast Research Group (GEDRE). His research interests include lighting systems, light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), drivers for LEDs and OLEDs, thermal management and finite element analysis.

Tiago Bandeira Marchesan, Electronic Ballast Research Group (GEDRE) – Federal University of Santa Maria (UFSM) Santa Maria – RS, Brazil e-mail: odirlan.ufsm@gmail.com

was born in Santa Maria, Brazil, in 1980. He received the B.S (with first-class honors) and Ph.D. degrees in electrical engineering from the Federal University of Santa Maria (UFSM), in 2003 and 2008, respectively. Since 2000, he has been a Researcher with the Electronic Ballast Research Group (GEDRE). Since 2011, he has been a Full Professor with the UFSM. His research interests include electronic ballasts, HID lamps, LEDs, dimming systems, and modeling and simulation of power converters.

References

Philips Lumileds, "White Paper: Street Lighting - LEDs: Coming Soon to a Street Light Near You", 2008.

United States Department of Energy, "Solid-State Lighting Research and Development: Multi-Year Program Plan", 2012.

Q. Yaxiao, L. Deyan, S. Y. Hui, "A Simple Method for Comparative Study on the Thermal Performance of LEDs and Fluorescent Lamps", IEEE Trans. on Power Electronics, vol. 24, pp. 1811-1818, Jul. 2009. https://doi.org/10.1109/TPEL.2009.2017021 DOI: https://doi.org/10.1109/TPEL.2009.2017021

H. T. Chen, X. H. Tao, S. Y. R. Hui, "Estimation of Optical Power and Heat-Dissipation Coefficient for the Photo-Electro-Thermal Theory for LED Systems", IEEE Trans. on Power Electronics, vol. 27, pp. 2176-2183, Apr. 2012. https://doi.org/10.1109/TPEL.2011.2165736 DOI: https://doi.org/10.1109/TPEL.2011.2165736

M. Y. Tsai, C. H. Chen, C. S. Kang, "Thermal analyses and measurements of low-Cost COP package for high-power LED", in 58th Electronic Components and Technology Conference, pp. 1812-1818, 2008. https://doi.org/10.1109/ECTC.2008.4550227 DOI: https://doi.org/10.1109/ECTC.2008.4550227

J. P. You, Y. He, F. G. Shi, "Thermal management of high power LEDs: Impact of die attach materials", in International Microsystems, Packaging, Assembly and Circuits Technology, pp. 239-242, 2007. https://doi.org/10.1109/IMPACT.2007.4433607 DOI: https://doi.org/10.1109/IMPACT.2007.4433607

J. Petroski, J. Norley, J. Schober, B. Reis, R. A. Reynolds, "Conduction cooling of large LED array systems", in 12th IEEE Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 1-10, 2010. https://doi.org/10.1109/ITHERM.2010.5501350 DOI: https://doi.org/10.1109/ITHERM.2010.5501350

L. Sheng, L. Tim, L. Xiaobing, C. Mingxiang, J. Xiaoping, "A microjet array cooling system for thermal management of active radars and high-brightness LEDs", in Electronic Components and Technology Conference, p. 5, 2006. https://doi.org/10.1109/ECTC.2006.1645876 DOI: https://doi.org/10.1109/ECTC.2006.1645876

X. Perpina, R. J. Werkhoven, M. Vellvehi, J. Jakovenko, X. Jorda, J. M. G. Kunen, P. Bancken, P. J. Bolt, "Thermal Analysis of LED Lamps for Optimal Driver Integration", IEEE Trans. on Power Electronics, vol. 30, pp. 3876-3891, Jul. 2015. https://doi.org/10.1109/TPEL.2014.2346543 DOI: https://doi.org/10.1109/TPEL.2014.2346543

G. Sauerlander, D. Hente, H. Radermacher, E. Waffenschmidt, J. Jacobs, "Driver Electronics for LEDs", in 41st IEEE Industry Applications Conf., pp. 2621-2626, 2006. https://doi.org/10.1109/IAS.2006.256909 DOI: https://doi.org/10.1109/IAS.2006.256909

IEC61000-3-2, "Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions HTXLSPHQW LQSXW FXUUHQW $ SHU SKDVH , 2009.

IEC61347-2-13, "Lamp controlgear - Part 2-13: Particular requirements for d.c. or a.c. supplied electronic controlgear for LED modules", 2006.

M. Arias, D. G. Lamar, J. Sebastian, D. Balocco, A. A. Diallo, "High-Efficiency LED Driver Without Electrolytic Capacitor for Street Lighting", IEEE Trans. on Industry Applications, vol. 49, pp. 127-137, Jan-Feb. 2013. https://doi.org/10.1109/TIA.2012.2227644 DOI: https://doi.org/10.1109/TIA.2012.2227644

P. S. Almeida, M. S. Soares, H. A. C. Braga. "Storage Capacitance Minimization in LED drivers based on photometrical constraints and converter integration". Eletrônica de Potência. pp. 962-971, mar./mai. 2013. https://doi.org/10.18618/REP.2013.2.962971 DOI: https://doi.org/10.18618/REP.2013.2.962971

D. Camponogara, D. R. Vargas, M. A. Dalla Costa, A. Campos, T. B. Marchesan, J. M. Alonso. "Minimização de Capacitâncias de luminárias a LED baseadana conexão otimizada de conversores estáticos". Eletrônica de Potência. pp. 1001-1009, mar./mai., 2013. https://doi.org/10.18618/REP.2013.2.10011009 DOI: https://doi.org/10.18618/REP.2013.2.10011009

J. M. Alonso, D. Gacio, A. J. Calleja, F. Sichirollo, M. F. da Silva, M. A. D. Costa, R. N. do Prado, "Reducing storage capacitance in off-line LED power supplies by using integrated converters", in IEEE Industry Applications Society Annual Meeting, pp. 1-8, 2012. https://doi.org/10.1109/IAS.2012.6374066 DOI: https://doi.org/10.1109/IAS.2012.6374066

V. C. Bender, N. D. Barth, G. C. Flores, M. A. Dalla Costa, T. B. Marchesan, P. S. Almeida, H. A. C. Braga, "Electrothermal Methodology Applied to Flicker Analysis in Off-line LED Systems " in 39th Annual Conf. on IEEE Industrial Electronics Society, pp. 6050-6055, 2013. https://doi.org/10.1109/IECON.2013.6700129 DOI: https://doi.org/10.1109/IECON.2013.6700129

P. S. Almeida, F. J. Nogueira, L. Guedes, H. A. C. Braga, "An experimental study on the photometrical impacts of several current waveforms on power white LEDs", in Brazilian Power Electronics Conference, pp. 728-733, 2011. https://doi.org/10.1109/COBEP.2011.6085242 DOI: https://doi.org/10.1109/COBEP.2011.6085242

D. Gacio, J. M. Alonso, J. Garcia, M. S. Perdigao, E. S. Saraiva, F. E. Bisogno, "Effects of the Junction Temperature on the Dynamic Resistance of White LEDs", IEEE Trans. on Industry Applications, vol. 49, pp. 750-760, Mar. 2013. https://doi.org/10.1109/TIA.2013.2243092 DOI: https://doi.org/10.1109/TIA.2013.2243092

R. A. Pinto, M. R. Cosetin, T. E. Bolzan, T. B. Marchesan, A. Campos, J. M. Alonso, M. A. Dalla Costa, R. N. do Prado, "A bidirectional buck-boost converter to supply LEDs from batteries during Peak Load Time", in 37th Annual Conference on IEEE Industrial Electronics Society, pp. 2848-2853, 2011. https://doi.org/10.1109/IECON.2011.6119764 DOI: https://doi.org/10.1109/IECON.2011.6119764

IEC60529, "Degrees of protection provided by enclosures (IP Code)", ed, 2001.

ANSI-C136.25, "American National Standard for Roadway and Area Lighting Equipment - Ingress Protection (Resistance to Dust, Solid Objects and Moisture) for Luminaire Enclosures", 2009.

ANSI-C136.37, "American National Standard for Roadway and Area Lighting Equipment Solid State Light Sources Used in Roadway and Area Lighting", 2011.

F. M. Kreith, R.; Bohn, M., Principles of Heat Transfer, 7th ed. Stamford: Cengage Learning, 2011.

S. Prstic, A. Bar-Cohen, "Heat shield an enhancement device for an unshrouded, forced convection heat sink", in The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 319-324, 2004. https://doi.org/10.1109/ITHERM.2004.1319191 DOI: https://doi.org/10.1109/ITHERM.2004.1319191

R. Eymard, T. Gallou, R. Herbin, "Finite Volume Methods: Handbook for Numerical Analysis", Ph. Ciarlet J.L. Lions eds, Marseille, pp 713-1020, 1997. https://doi.org/10.1016/S1570-8659(00)07005-8 DOI: https://doi.org/10.1016/S1570-8659(00)07005-8

ANSYS. ANSYS CFX-Solver Theory Guide. Available:http://148.204.81.206/Ansys/150/ANSYS%20CFX-Solver%20Theory%20Guide.pdf

Philips Lumileds, Technical Datasheet DS64, 2011.

BERGQUIST. Bond Ply 100 Datasheet. Available: http://www.bergquistcompany.com/pdfs/dataSheets/PDS_BP100_1011.pdf

V. C. Bender, O. Iaronka, W. D. Vizzotto, M. A. D. Costa, R. N. do Prado, T. B. Marchesan, "Design Methodology for Light-Emitting Diode Systems by Considering an Electrothermal Model", IEEE Trans. on Electron Devices, vol. 60, pp. 3799-3806, Nov. 2013. https://doi.org/10.1109/TED.2013.2282901 DOI: https://doi.org/10.1109/TED.2013.2282901

V. C. Bender, I. Odirlan, W. D. Vizzotto, M. A. Dalla-Costa, R. N. Do Prado, T. B. Marchesan, "Metodologia de Projeto Eletrotérmico de LEDs aplicada ao Desenvolvimento de Sistemas de Iluminação", Eletrônica de Potência, vol. 18, pp. 991-1000, mar./mai., 2013. https://doi.org/10.18618/REP.2013.2.9911000 DOI: https://doi.org/10.18618/REP.2013.2.9911000

Downloads

Published

2015-02-28

How to Cite

[1]
O. Iaronka, V. C. Bender, and T. B. Marchesan, “Thermal Management of Led Luminaires Based on Computational Fluid Dynamic”, Eletrônica de Potência, vol. 20, no. 1, pp. 76–84, Feb. 2015.

Issue

Section

Original Papers