Controlador Híbrido Robusto PI-LQG Para Melhoria da Performance do STATCOM
DOI:
https://doi.org/10.18618/REP.2020.1.0006Keywords:
Filtro de Kalman, LQG, LQR, PI, STATCOMAbstract
Este trabalho propõe uma técnica de controle híbrida Proporcional Integral - Linear Quadratic Gaussian (PI-LQG) para o Static Synchronous Compensator (STATCOM). Na técnica proposta, adiciona-se o filtro de Kalman ao controlador Linear Quadratic Regulator (LQR) com ação integral, formando o controlador LQG, tal combinação torna o sistema mais robusto e menos suscetível a ruídos de processo e de medição. Ao se utilizar um controlador híbrido, as matrizes de ponderação para projetar os ganhos do controlador LQR e do filtro de Kalman são de menor ordem, facilitando a sintonia dos controladores. Para a validação da técnica proposta, são utilizadas duas técnicas de controle para comparação: PI tradicional e PI-LQR com ação integral. Os resultados são obtidos via simulação, no software PSIM, e experimentalmente.
Downloads
References
B. Singh, A. Chandra, and Kamal Al-Haddad, Power Quality Problems and Mitigation Techniques, vol. 37, no. 4. 2015. https://doi.org/10.1002/9781118922064 DOI: https://doi.org/10.1002/9781118922064
M. a Abido, "Power System Stability Enhancement Using Facts Controllers: a Review," Arab. J. Sci. Eng., vol. 34, no. 1, p. 153-172, Apr. 2009.
K. Al-Haddad, R. Saha, A. Chandra, and B. Singh, "Static synchronous compensators (STATCOM): a review," IET Power Electron., vol. 2, no. 4, p. 297-324, Jul. 2009. https://doi.org/10.1049/iet-pel.2008.0034 DOI: https://doi.org/10.1049/iet-pel.2008.0034
V. Blasko and V. Kaura, "A new mathematical model and control of a three-phase AC-DC voltage source converter," IEEE Trans. Power Electron., vol. 12, no. 1, p. 116-123, Jan. 1997. https://doi.org/10.1109/63.554176 DOI: https://doi.org/10.1109/63.554176
B. Bahrani, S. Kenzelmann, and A. Rufer, "Multivariable-PI-based dq current control of voltage source converters with superior axis decoupling capability," IEEE Trans. Ind. Electron., vol. 58, no. 7, p.3016-3026, Jul. 2011. https://doi.org/10.1109/TIE.2010.2070776 DOI: https://doi.org/10.1109/TIE.2010.2070776
P. W. Lehn and M. R. Iravani, "Experimental evaluation of STATCOM closed loop dynamics," IEEE Trans. Power Deliv., vol. 13, no. 4, p. 1378-1384, 1998. https://doi.org/10.1109/61.714511 DOI: https://doi.org/10.1109/61.714511
P. Rao, M. L. Crow, and Z. Yang, "STATCOM control for power system voltage control applications," IEEE Trans. Power Deliv., vol. 15, no. 4, p. 1311-1317, Oct. 2000. https://doi.org/10.1109/61.891520 DOI: https://doi.org/10.1109/61.891520
B. N. Singh, A. Chandra, and K. Al-Haddad, "DSP-based indirect-current-controlled STATCOM. Part 1: Evaluation of current control techniques," IEE Proc. - Electr. Power Appl., vol. 147, no. 2, p. 107, Jul. 2002. https://doi.org/10.1049/ip-epa:20000066 DOI: https://doi.org/10.1049/ip-epa:20000066
D. Shen and P. W. Lehn, "Modeling, analysis, and control of a current source inverter-based STATCOM," IEEE Trans. Power Deliv., vol. 17, no. 1, p. 248-253, Jan. 2002. https://doi.org/10.1109/61.974214 DOI: https://doi.org/10.1109/61.974214
B. Kedjar and K. Al-Haddad, "DSP-based implementation of an LQR with integral action for a three-phase three-wire shunt active power filter," IEEE Trans. Ind. Electron., 2009. https://doi.org/10.1109/TIE.2008.2006027 DOI: https://doi.org/10.1109/TIE.2008.2006027
W. Ren, L. Qian, D. Cartes, and M. Steurer, "A multivariable control method in STATCOM application for performance improvement," in Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2005.
D. Pullaguram, S. Mishra, N. Senroy, and M. Mukherjee, "Design and Tuning of Robust Fractional Order Controller for Autonomous Microgrid VSC System," IEEE Trans. Ind. Appl., vol. 54, no. 1, p. 91-101, Jan. 2018. https://doi.org/10.1109/TIA.2017.2758755 DOI: https://doi.org/10.1109/TIA.2017.2758755
C. Pang and M. Kezunovic, "A new approach to PID controller design of STATCOM," in 2008 40th North American Power Symposium, 2008, p. 1- 6. https://doi.org/10.1109/NAPS.2008.5307412 DOI: https://doi.org/10.1109/NAPS.2008.5307412
E. Song, A. F. Lynch, and V. Dinavahi, "Experimental validation of nonlinear control for a voltage source converter," IEEE Trans. Control Syst. Technol., vol. 17, no. 5, p. 1135-1144, Sept. 2009. https://doi.org/10.1109/TCST.2008.2001741 DOI: https://doi.org/10.1109/TCST.2008.2001741
J. Liu, Y. Gao, W. Luo, and L. Wu, "Takagi-Sugeno fuzzy-model-based control of three-phase AC/DC voltage source converters using adaptive sliding mode technique," IET Control Theory Appl., vol. 11, no. 8, p. 1255-1263, May 2017. https://doi.org/10.1049/iet-cta.2016.0689 DOI: https://doi.org/10.1049/iet-cta.2016.0689
J. Liu, Y. Yin, W. Luo, S. Vazquez, L. G. Franquelo, and L. Wu, "Sliding Mode Control of a Three-Phase AC/DC Voltage Source Converter Under Unknown Load Conditions: Industry Applications," IEEE Trans. Syst. Man, Cybern. Syst., vol. 48, no. 10, p. 1771-1780, Oct. 2018. https://doi.org/10.1109/TSMC.2017.2758598 DOI: https://doi.org/10.1109/TSMC.2017.2758598
H.-S. Kim, H.-S. Jung, and S.-K. Sul, "Discrete-Time Voltage Controller for Voltage Source Converters With LC Filter Based on State-Space Models," IEEE Trans. Ind. Appl., vol. 55, no. 1, p. 529-540, Jan. 2019. https://doi.org/10.1109/TIA.2018.2868552 DOI: https://doi.org/10.1109/TIA.2018.2868552
F. Huerta, D. Pizarro, S. Cóbreces, F. J. Rodríguez, C. Girón, and A. Rodríguez, "LQG servo controller for the current control of LCL grid-connected Voltage-Source Converters," IEEE Trans. Ind. Electron., vol. 59, no. 11, p. 4272-4284, Nov. 2012. https://doi.org/10.1109/TIE.2011.2179273 DOI: https://doi.org/10.1109/TIE.2011.2179273
J. M. Kanieski, R. Cardoso, H. Pinheiro, and H. A. Gründling, "Kalman filter-based control system for power quality conditioning devices," IEEE Trans. Ind. Electron., vol. 60, no. 11, p. 5214-5227, Nov. 2013. https://doi.org/10.1109/TIE.2012.2226412 DOI: https://doi.org/10.1109/TIE.2012.2226412
R. Panigrahi, B. Subudhi, and P. C. Panda, "A robust LQG servo control strategy of shunt-active power filter for power quality enhancement," IEEE Trans. Power Electron., vol. 31, no. 4, p. 2860-2869, Apr. 2016. https://doi.org/10.1109/TPEL.2015.2456155 DOI: https://doi.org/10.1109/TPEL.2015.2456155
M. T. Andani, H. Pourgharibshahi, Z. Ramezani, and H. Zargarzadeh, "Controller design for voltage-source converter using LQG/LTR," in 2018 IEEE Texas Power and Energy Conference (TPEC), 2018, p. 1-6. https://doi.org/10.1109/TPEC.2018.8312072 DOI: https://doi.org/10.1109/TPEC.2018.8312072
V. P. Pinto, J. Carlos Teles Campos, N. Rocha, and C. Brandão Jacobina, "Multivariable Robust Controller With Integral Action Application In A Wind Power Generation System," Eletrônica de Potência, vol. 16, no. 2, p. 147-157, May 2011. https://doi.org/10.18618/REP.2011.2.147157 DOI: https://doi.org/10.18618/REP.2011.2.147157
F. Huerta, J. Perez, S. Cobreces, and M. Rizo, "Frequency-Adaptive Multiresonant LQG State-Feedback Current Controller for LCL-Filtered VSCs Under Distorted Grid Voltages," IEEE Trans. Ind. Electron., vol. 65, no. 11, p. 8433-8444, Nov. 2018. https://doi.org/10.1109/TIE.2018.2814004 DOI: https://doi.org/10.1109/TIE.2018.2814004
M. Karimi-Ghartemani, H. Karimi, and M. R. Iravani, "A Magnitude/Phase-Locked Loop System Based on Estimation of Frequency and In-Phase/Quadrature-Phase Amplitudes," IEEE Trans. Ind. Electron., vol. 51, no. 2, p. 511-517, Apr. 2004. https://doi.org/10.1109/TIE.2004.825282 DOI: https://doi.org/10.1109/TIE.2004.825282
H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, vol. 407. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. https://doi.org/10.1002/0470118938 DOI: https://doi.org/10.1002/0470118938
R. Pena, J. C. Clare, and G. M. Asher, "Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation," IEE Proc. - Electr. Power Appl., 2002.
K. Ogata, Modern Control Engineering, vol. 17. Prentice-Hall, 2002.
M. Athans, "The Role and Use of the Stochastic Linear-Quadratic-Gaussian Problem in Control System Design," IEEE Transactions on Automatic Control, vol. 16, no. 6. p. 529-552, Dec. 1971. https://doi.org/10.1109/TAC.1971.1099818 DOI: https://doi.org/10.1109/TAC.1971.1099818
D. Simon, Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. 2006. https://doi.org/10.1002/0470045345 DOI: https://doi.org/10.1002/0470045345
S. Skogestad, Multivariable Feedback Control: Analysis and Design. 2005.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Eletrônica de Potência
This work is licensed under a Creative Commons Attribution 4.0 International License.