Frequency-domain Analysis Of Resonant Current Controllers For Active Power Filters
DOI:
https://doi.org/10.18618/REP.2010.4.294304Keywords:
Active Power Filters, Current controlAbstract
This paper performs a frequency-domain analysis of three different resonant current controllers for active power filters. Respect to previous papers, the novelty consists of a stability analysis of the closed loop system using the Nyquist criterion. To perform this analysis, the time delay introduced by the inverter and the sampling due to the digital control are taken into account in the current controller closed loop transfer function. This procedure demonstrates the importance and effectiveness of the delay compensation to maintain the whole system stability. Experimental results are presented for a 25 kVA shunt active power filter prototype to confirm the theoretical analysis.
Downloads
References
S. Battacharya, D. M. Divan, and B. Bannerjee. Active Filter solutions for utility interface. InConf. Rec. IEEE ISIE, volume 1, pages 53-63, 1995.
S. Bhattacharya, T. M. Frank, D.M. Divan, and B. Banerjee. Active filter system implementation. IEEEInd. Applicat. Mag., 4(5):47-63, Sept 1998. https://doi.org/10.1109/2943.715508 DOI: https://doi.org/10.1109/2943.715508
H. Akagi. Trends in active power line conditioners.Conf.Rec. IEEE PESC Power Electron., 9(3):263-268, May1994. https://doi.org/10.1109/63.311258 DOI: https://doi.org/10.1109/63.311258
F. Z. Peng, H. Akagi, and A. Nabae. A novel harmonica power filter. InConf. Rec. IEEE PESC, volume 2, pages 1151-1159, 1988.
H. Fujita and H Akagi. A practical approach to harmonic compensation in power systems-series connection of passive and active filters.IEEE Trans. Ind. Appl.,27(6):1020-1025, 1991. https://doi.org/10.1109/28.108451 DOI: https://doi.org/10.1109/28.108451
S. Srianthumrong and H. Akagi.A medium-voltage transformerless ac/dc power conversion system consisting of a diode rectifier and a shunt hybrid filter.IEEE Trans. Ind. Appl., 39(3):874-882, 2003. https://doi.org/10.1109/TIA.2003.811787 DOI: https://doi.org/10.1109/TIA.2003.811787
H. Akagi, Y. Kanagawa, and A. Nabae. Instantaneous reactive power compensators comprising switching devices without energy storage components.IEEE Trans.Ind. Appl., 20:625-630, 1984. https://doi.org/10.1109/TIA.1984.4504460 DOI: https://doi.org/10.1109/TIA.1984.4504460
R. S. Herrera, P. Salmeron, and H. Kim. Instantaneous Reactive power theory applied to active power filter compensation: Different approaches, assessment, and experimental results.IEEE Trans. Ind. Electron.,55(1):184-196, Jan. 2008. https://doi.org/10.1109/TIE.2007.905959 DOI: https://doi.org/10.1109/TIE.2007.905959
M. El-Habrouk, M. K. Darwish, and P. Metha. Active Power filters: A review. InIEE Proc. Elect. Power Appl.,volume 147, pages 7-12, 2000. https://doi.org/10.1049/ip-epa:20000522 DOI: https://doi.org/10.1049/ip-epa:20000522
S. Buso, L. Malesani, and P. Mattavelli. Comparison ofcurrent control techniques for active filter applications.IEEE Trans. Ind. Electron., 45(5):722-729, Oct. 1998. https://doi.org/10.1109/41.720328 DOI: https://doi.org/10.1109/41.720328
J. Rodr ́ıguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana,P. Cortes, and U. Ammann. Predictive current control of a voltage source inverter.IEEE Trans. Ind. Electron.,54(1):495-503, Feb. 2007. https://doi.org/10.1109/TIE.2006.888802 DOI: https://doi.org/10.1109/TIE.2006.888802
M. P. Kazmierkowski and L. Malesani. Current Control techniques for three-phase voltage-source pwm converters: A survey.IEEE Trans. Ind. Electron.,45(5):691-703, Oct. 1998. https://doi.org/10.1109/41.720325 DOI: https://doi.org/10.1109/41.720325
L. R. Limongi, R. Bojoi, G. Griva, and A. Tenconi.Digital current-control schemes.IEEE Ind. Electron.Mag., 3(1):20-31, 2009. https://doi.org/10.1109/MIE.2009.931894 DOI: https://doi.org/10.1109/MIE.2009.931894
M. Sonnenschein and M. Weinhold. Comparison of time-domain and frequency-domain control schemes for shunt active filters. InConf. Rec. ETEP, volume 9, pages 5-16,1999. https://doi.org/10.1002/etep.4450090101 DOI: https://doi.org/10.1002/etep.4450090101
Y. Sato, T. Ishizuka, K. Nezu, and T. Kataoka. A new control strategy for voltage-type pwm rectifiers to realize zero steady-state control error in input current.IEEETrans. Ind. Appl., 34(3):480-486, 1998. https://doi.org/10.1109/28.673717 DOI: https://doi.org/10.1109/28.673717
D. N. Zmood, D. G. Holmes, and G. Bode. Frequency Domain analysis of three phase linear current regulators.IEEE Trans. Ind. Appl., 37(2):601-610, March 2001. https://doi.org/10.1109/28.913727 DOI: https://doi.org/10.1109/28.913727
D. N. Zmood and D. G. Holmes. Stationary frame current regulation of pwm inverters with zero steady-state error.IEEE Trans. Power Electron., 18(3):814-822, May 2003. https://doi.org/10.1109/TPEL.2003.810852 DOI: https://doi.org/10.1109/TPEL.2003.810852
X. Yuan, W. Merk, H. Stemmler, and J. Allmeling.Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions.IEEE Trans. Ind. Appl.,38(2):523-532, March 2002. https://doi.org/10.1109/28.993175 DOI: https://doi.org/10.1109/28.993175
S. Fukuda and R. Imamura. Application of a sinusoidal internal model to current control of three-phase utility-interface converters.IEEE Trans. Ind. Electron.,52(2):420-426, April 2005. https://doi.org/10.1109/TIE.2005.843914 DOI: https://doi.org/10.1109/TIE.2005.843914
R. Grin ́o, R. Cardoner, R. Costa-Castell ́o, and E. Fossas.Digital repetitive control of a three-phase four-wire shunt active filter.IEEE Trans. Ind. Electron., 54(3):1495-1503, June 2007. https://doi.org/10.1109/TIE.2007.894790 DOI: https://doi.org/10.1109/TIE.2007.894790
P. Mattavelli and F. P. Marafao. Repetitive-based control for selective harmonic compensation in active powerfilters.IEEE Trans. Ind. Electron., 51(5):1018-1024,2004. https://doi.org/10.1109/TIE.2004.834961 DOI: https://doi.org/10.1109/TIE.2004.834961
R. Bojoi, G. Griva, V. Bostan, M. Guerriero, F. Farina,and F. Profumo.Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame.IEEE Trans. Power Electron., 20(6):1402-1412, Nov. 2005. https://doi.org/10.1109/TPEL.2005.857558 DOI: https://doi.org/10.1109/TPEL.2005.857558
L. Asiminoaei, C. Lascu, F. Blaabjerg, and I. Boldea.New current control structure for shunt active powerfilters. InConf. Rec. IEEE IAS, pages 183-190, 2006. https://doi.org/10.1109/IAS.2006.256503 DOI: https://doi.org/10.1109/IAS.2006.256503
C. Lascu, L. Asiminoaei, I. Boldea, and F. Blaabjerg.High performance current controller for selective harmonic compensation in active power filters.IEEETrans. Power Electron., 22(5):1826-1835, 2007. https://doi.org/10.1109/TPEL.2007.904060 DOI: https://doi.org/10.1109/TPEL.2007.904060
C. Lascu, L. Asiminoaei, I. Boldea, and F. Blaabjerg.Frequency response analysis of current controllers for selective harmonic compensation in active power filters.IEEE Trans. Ind. Electron., 56(2):337-347, Feb. 2009. https://doi.org/10.1109/TIE.2008.2006953 DOI: https://doi.org/10.1109/TIE.2008.2006953
F. Briz, M. W. Degner, and R. D. Lorenz. Analysis and design of current regulators using complex vectors.IEEETrans. Ind. Appl., 36(3):817-825, May 2000. https://doi.org/10.1109/28.845057 DOI: https://doi.org/10.1109/28.845057
D. Basic, V. S. Ramsden, and P. K. Muttik. Harmonic Filtering of high-power 12-pulse rectifier loads with a selective hybrid filter system.IEEE Trans. Ind. Electron.,48(6):1118-1127, Dec. 2001. https://doi.org/10.1109/41.969390 DOI: https://doi.org/10.1109/41.969390
K. Ogata.Modern Control Engineering. Prentice Hall,3rdEdition, 1997.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2010 Revista Eletrônica de Potência
This work is licensed under a Creative Commons Attribution 4.0 International License.