An Efficient Maximum-power-point-tracking Controller For Grid-connected Photovoltaic Energy Conversion System
DOI:
https://doi.org/10.18618/REP.2007.2.147154Keywords:
Adaptive Duty Cycle Algorithm, Boost Converter, Digital Signal Processor, Maximum Power Point Tracker, Photovoltaic SystemAbstract
This paper investigates the effectiveness of the “Perturbation and Observation” (P&O) method and “Incremental Conductance” (IncCond) method through simulations carried out by using SimPowerSystems of MATLAB/Simulink®. Both the steady-state and transient characteristics of each control algorithm are fully analyzed and compared by using a proposed performance index. Finally, a new MPPT control algorithm based on an enhanced incremental conductance method is proposed in order to improve the efficiency of the PV power generation system at different climatic and load conditions. An adaptive duty cycle perturbation step size is made dependent on the sensitivity of the PV array power to the previous perturbation in order to obtain a fast dynamic response and accurate tracking of the MPP. Digital simulations and experimental results demonstrate the superior performance of the proposed technique.
Downloads
References
K. Y. Khouzam: "Optimum load matching in direct-coupled photovoltaic power systems - application to resistive loads", IEEE Trans. on Energy Conv., no. 2, pp. 265-271, June 1990. https://doi.org/10.1109/60.107220 DOI: https://doi.org/10.1109/60.107220
J. Applebaum, "The quality of load matching in a direct-coupling photovoltaic system", IEEE Transactions on Energy Conversion, vol. 2, no. 4, pp. 534-541, Dec. 1987. https://doi.org/10.1109/TEC.1987.4765889 DOI: https://doi.org/10.1109/TEC.1987.4765889
S. M. Alghuwainem, "Matching of a DC motor to a photovoltaic generator using a step-up converter with a current locked loop", IEEE Transactions on Energy Conversion, vol. 9, NO. 1, pp. 192-198, March 1994. https://doi.org/10.1109/60.282492 DOI: https://doi.org/10.1109/60.282492
M. M. Saied, A. A. Hanafy, M. A. El-Gabaly, and A. M. Sharaf, "Optimal design parameter for a PV array coupled to a DC motor via a DC-DC transformer," IEEE Transactions on Energy Conversion, vol. 6, pp. 593-598, 1991. https://doi.org/10.1109/60.103630 DOI: https://doi.org/10.1109/60.103630
J. Enslin, M. S. Wolf, D. B. Snyman, and W. Sweigers, "Integrated photovoltaic maximum power point tracking converter," IEEE Transactions on Industrial Electronics, vol. 44, pp. 769-773, Dec. 1997. https://doi.org/10.1109/41.649937 DOI: https://doi.org/10.1109/41.649937
T. Hiyama, S. Kouzuma, and T. Imakubo, "Identification of optimal operation point of PV modules using neural network for real time maximum power tracking control," IEEE Trans. on Energy Conversion, vol. 10, no. 3, pp. 360-367, Jn. 1995. https://doi.org/10.1109/60.391904 DOI: https://doi.org/10.1109/60.391904
T. Hiyama, S. Kouzuma, T. Imakubo, and T. H. Ortmeyer. "Evaluation of neural network based real time maximum power tracking controller for PV system," IEEE Trans. on Energy Conversion, vol. 10, no. 3, pp. 543-548, Sept. 1995. https://doi.org/10.1109/60.464880 DOI: https://doi.org/10.1109/60.464880
C. Y. Won, D.-H. Kim and S.-C. Kim, "A new maximum power point tracker of photovoltaic arrays using fuzzy controller", in Proc. of Power Electronic Specialist Conference, 396-403, 1994. https://doi.org/10.1109/PESC.1994.349703 DOI: https://doi.org/10.1109/PESC.1994.349703
J. L. Santos, F. Antunes, A. C. Cícero Cruz, "A maximum power point tracker for PV systems using a high performance boost converter", Solar Energy, vol. 80, pp. 772-778, 2006. https://doi.org/10.1016/j.solener.2005.06.014 DOI: https://doi.org/10.1016/j.solener.2005.06.014
C. Hua, J. Lin and C. Shen, "Implementation of a DSP-controlled photovoltaic system with peak power tracking," IEEE Transactions on Industrial Electronics, vol. 45, no. 1, pp. 99-107, Feb. 1998. https://doi.org/10.1109/41.661310 DOI: https://doi.org/10.1109/41.661310
K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, "Maximum photovoltaic power tracking: An algorithm for rapidly changing atmospheric conditions," Proc. IEE-Generation, Transmission and Distribution, vol. 10, no. 1, pp. 59-64, Jan. 1995. https://doi.org/10.1049/ip-gtd:19951577 DOI: https://doi.org/10.1049/ip-gtd:19951577
S. W. Angrist, Direct energy conversion, Allyn and Bacon, 2aEdition, Boston, 1971.
MATLAB/Simulink®, Users ́ Guide, MathWorks Inc.
M. G. Molina, and P. E. Mercado, "Control Design and Simulation of DSTATCOM with Energy Storage for Power Quality Improvements", inProc. IEEE/PES Transmission and Distribution Latin America, 01-07, Aug. 2006. https://doi.org/10.1109/TDCLA.2006.311436 DOI: https://doi.org/10.1109/TDCLA.2006.311436
N. Femia, G. Petrone. G. Spagnuolo. M. Vitelli: "Increasing the efficiency of P&O MPPT by converter dynamic matching", inProc. IEEE International Symposium on Industrial Electronics, pp. 1-8, 2004. https://doi.org/10.1109/ISIE.2004.1571953 DOI: https://doi.org/10.1109/ISIE.2004.1571953
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2007 Eletrônica de Potência
This work is licensed under a Creative Commons Attribution 4.0 International License.