Experimental Assessment of Predictive Current Control Applied to Induction Machine Drive Systems Operating Under Single-Phase Open-Circuit Fault
DOI:
https://doi.org/10.18618/REP.2024.1.0011Keywords:
Fault tolerance, FCS-MPC, Induction Machine Drive Systems, Predictive Current ControlAbstract
Predictive Current Control (PCC) has been widely applied in several applications. However, the literature has not discussed its use as a fault tolerance control algorithm in induction drive systems. In this way, this paper discusses the PCC method in two faulttolerant squirrel-cage induction machine drive systems operating under single-phase open-circuit faults. PCC’s postfault performance is compared to Field Oriented Control (FOC) for different steady- and transient-state scenarios, analyzing harmonic distortion, torque ripple, and the transition from healthy to postfault operation. Also, experiments tested the robustness of postfault PCC to low-speed operation, parametric variation, and a step change in reference rotor speed, showing that PCC also presents fault-tolerant operation under these conditions.
Downloads
References
F. Blaschke, “A new method for the structural decoupling of A.C. induction machines”, in Conf. Rec. IFAC, Duesseldorf, Germany, Oct. 1971.
M. Depenbrock, “Direct self-control (DSC) of inverterfed induction machine”, IEEE Transactions on Power Electronics, vol. 3, no. 4, pp. 420–429, 1988. DOI: https://doi.org/10.1109/63.17963 DOI: https://doi.org/10.1109/63.17963
I. Takahashi, T. Noguchi, “A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor”, IEEE Transactions on Industry Applications, vol. IA-22, no. 5, pp. 820–827, 1986. DOI: https://doi.org/10.1109/TIA.1986.4504799 DOI: https://doi.org/10.1109/TIA.1986.4504799
D. Casadei, F. Profumo, G. Serra, A. Tani, “FOC and DTC: two viable schemes for induction motors torque control”, IEEE Transactions on Power Electronics, vol. 17, no. 5, pp. 779–787, 2002. DOI: https://doi.org/10.1109/TPEL.2002.802183 DOI: https://doi.org/10.1109/TPEL.2002.802183
J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes, U. Ammann, “Predictive Current Control of a Voltage Source Inverter”, IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 495–503, Feb 2007, doi: https://doi.org/10.1109/TIE.2006.888802. DOI: https://doi.org/10.1109/TIE.2006.888802
S. Kouro, P. Cortes, R. Vargas, U. Ammann, J. Rodriguez, “Model Predictive Control—A Simple and Powerful Method to Control Power Converters”, IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1826–1838, 2009. DOI: https://doi.org/10.1109/TIE.2008.2008349 DOI: https://doi.org/10.1109/TIE.2008.2008349
F. Wang, S. Li, X. Mei, W. Xie, J. Rodríguez, R. M. Kennel, “Model-Based Predictive Direct Control Strategies for Electrical Drives: An Experimental Evaluation of PTC and PCC Methods”, IEEE Transactions on Industrial Informatics, vol. 11, no. 3, pp. 671–681, 2015. DOI: https://doi.org/10.1109/TII.2015.2423154 DOI: https://doi.org/10.1109/TII.2015.2423154
F. Wang, H. Xie, Q. Chen, S. A. Davari, J. Rodríguez, R. Kennel, “Parallel Predictive Torque Control for Induction Machines Without Weighting Factors”, IEEE Transactions on Power Electronics, vol. 35, no. 2, pp. 1779–1788, 2020. DOI: https://doi.org/10.1109/TPEL.2019.2922312 DOI: https://doi.org/10.1109/TPEL.2019.2922312
M. Norambuena, J. Rodriguez, Z. Zhang, F. Wang, C. Garcia, R. Kennel, “A Very Simple Strategy for High-Quality Performance of AC Machines Using Model Predictive Control”, IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 794–800, 2019. DOI: https://doi.org/10.1109/TPEL.2018.2812833 DOI: https://doi.org/10.1109/TPEL.2018.2812833
A. Lunardi, A. Sguarezi Filho, “Controle Preditivo Baseado em Modelo para Sistema Eólico Empregando Gerador de Indução Gaiola de Esquilo”, Eletrônica de Potência, vol. 23, no. 3, pp. 330–338, 2018. DOI: https://doi.org/10.18618/REP.2018.3.2788 DOI: https://doi.org/10.18618/REP.2018.3.2788
R. Figueiredo, A. Lunardi, A. Sguarezi Filho, A. Pelizari, “Controle Preditivo Robusto com Conjunto Finito de Estados para Máquinas de Indução”, Eletrônica de Potência, vol. 27, no. 3, pp. 208–215, 2022. DOI: https://doi.org/10.18618/REP.2022.3.0027 DOI: https://doi.org/10.18618/REP.2022.3.0027
M. S. R. Saeed, W. Song, B. Yu, Z. Xie, X. Feng, “Low-Complexity Deadbeat Model Predictive Current Control for Open-Winding PMSM Drive With Zero- Sequence Current Suppression”, IEEE Transactions on Transportation Electrification, vol. 7, no. 4, pp. 2671– 2682, 2021. DOI: https://doi.org/10.1109/TTE.2021.3071471 DOI: https://doi.org/10.1109/TTE.2021.3071471
C. M. Barros, W. Mota, P. Barros, L. Barros, “MPPT de Sistemas de Conversão de Energia Eólica Baseado em PMSG Usando Controle Preditivo”, Eletrônica de Potência, vol. 20, no. 4, pp. 364–372, 2015. DOI: https://doi.org/10.18618/REP.2015.4.2553 DOI: https://doi.org/10.18618/REP.2015.4.2553
B. A. Welchko, T. A. Lipo, T. M. Jahns, S. E. Schulz, “Fault tolerant three-phase AC motor drive topologies: a comparison of features, cost, and limitations”, IEEE Transactions on Power Electronics, vol. 19, no. 4, pp. 1108–1116, 2004. DOI: https://doi.org/10.1109/TPEL.2004.830074 DOI: https://doi.org/10.1109/TPEL.2004.830074
A. Kiselev, G. R. Catuogno, A. Kuznietsov, R. Leidhold, “Finite-Control-Set MPC for Open-Phase Fault-Tolerant Control of PM Synchronous Motor Drives”, IEEE Transactions on Industrial Electronics, vol. 67, no. 6, pp. 4444–4452, 2020. DOI: https://doi.org/10.1109/TIE.2019.2931285 DOI: https://doi.org/10.1109/TIE.2019.2931285
Y. Guo, L. Wu, X. Huang, Y. Fang, J. Liu, “Adaptive Torque Ripple Suppression Methods of Three-Phase PMSM During Single-Phase Open-Circuit Fault-Tolerant Operation”, IEEE Transactions on Industry Applications, vol. 56, no. 5, pp. 4955–4965, 2020. DOI: https://doi.org/10.1109/TIA.2020.3004305 DOI: https://doi.org/10.1109/TIA.2020.3004305
P. H. M. Martins, V. F. M. B. Melo, G. F. Paz, I. S. Freitas, “Direct-Torque-Control Fault-Tolerant Strategies for Three Induction Motor Drive Systems Operating Under Single-Phase Open-Circuit Fault”, in Brazilian Conference on Automatic (CBA 2020), 2020. DOI: https://doi.org/10.48011/asba.v2i1.1325 DOI: https://doi.org/10.48011/asba.v2i1.1325
M. Tousizadeh, H. S. Che, J. Selvaraj, N. A. Rahim, B.-T. Ooi, “Performance Comparison of Fault-Tolerant Three-Phase Induction Motor Drives Considering Current and Voltage Limits”, IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2639–2648, 2019. DOI: https://doi.org/10.1109/TIE.2018.2850006 DOI: https://doi.org/10.1109/TIE.2018.2850006
L. M. de Oliveira, V. F. M. B. Melo, G. F. da Paz, F. V. Rocha, E. L. L. Fabrício, “Predictive Current Control Applied to Induction Machine Drive Systems Operating Under Single-Phase Open-Circuit Fault”, in 2021 Brazilian Power Electronics Conference (COBEP), pp. 1–8, 2021. DOI: https://doi.org/10.1109/COBEP53665.2021.9684113 DOI: https://doi.org/10.1109/COBEP53665.2021.9684113
X. Wu, W. Huang, X. Lin, W. Jiang, Y. Zhao, S. Zhu, “Direct Torque Control for Induction Motors Based on Minimum Voltage Vector Error”, IEEE Transactions on Industrial Electronics, vol. 68, no. 5, pp. 3794– 3804, 2021. DOI: https://doi.org/10.1109/TIE.2020.2987283 DOI: https://doi.org/10.1109/TIE.2020.2987283
K. Ogata, Modern Control Engineering: Fifth Edition, Pearson, Upper Saddle River, USA, 2010.
C. Jacobina, M. de Rossiter Correa, R. Pinheiro, E. da Silva, A. Lima, “Modeling and control of unbalanced three-phase systems containing PWM converters”, IEEE Transactions on Industry Applications, vol. 37, no. 6, pp. 1807–1816, 2001. DOI: https://doi.org/10.1109/28.968195 DOI: https://doi.org/10.1109/28.968195
E. R. C. da Silva, E. C. dos Santos, B. Jacobina, “Pulsewidth Modulation Strategies”, IEEE Industrial Electronics Magazine, vol. 5, no. 2, pp. 37–45, 2011. DOI: https://doi.org/10.1109/MIE.2011.941120 DOI: https://doi.org/10.1109/MIE.2011.941120
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Liane M. de Oliveira, Victor F. M. B. Melo, Gilielson F. da Paz , Filipe V. Rocha, Edgard L. L. Fabrício
This work is licensed under a Creative Commons Attribution 4.0 International License.