Controladores PID com desempenho otimizado aplicados a conversores boost com incertezas paramétricas na carga

Authors

DOI:

https://doi.org/10.18618/REP.2024.1.0031

Keywords:

Controladores PIDs, conversores boost, otimização por enxame de partículas, incertezas paramétricas, robustez

Abstract

A principal motivação para este trabalho é a possibilidade de melhorar o projeto de controladores proporcionais-integrais-derivativos aplicado ao conversor boost, com incertezas paramétricas na carga, por meio de meta-heurísticas. Neste sentido, propõe-se aqui um novo procedimento para sintonia automática off-line destes controladores aplicados à regulação de tensão de conversores CC-CC do tipo boost com carga pertencente a um intervalo de incertezas. Um algoritmo de otimização por enxame de partículas é utilizado para evoluir os ganhos do controlador de forma a minimizar um erro médio quadrático da tensão de saída, respeitando limites pré-estabelecidos para margens de fase e de ganho, de frequência de cruzamento, e também para sobressinal e tempo de acomodação das respostas transitórias para variações de carga. O controlador otimizado pelo procedimento proposto fornece respostas superiores quando comparado a controladores largamente utilizados, projetados apenas para uma carga nominal. Resultados experimentais em um protótipo de 50 W, com o controle implementado em um processador digital de sinais de baixo custo, confirmam a viabilidade prática.

Downloads

Download data is not yet available.

Author Biographies

Robert Uiliam Marin Viaro, Universidade Federal de Santa Maria

possui graduação em Engenharia Elétrica (2022) pela Universidade Federal de Santa Maria (UFSM), onde atualmente realiza o mestrado em Engenharia Elétrica, atuando junto ao Grupo de Eletrônica de Potência e Controle (GEPOC).

Lucas Cielo Borin, Universidade Federal de Santa Maria

possui graduação em Engenharia de Computação (2018) e mestrado em Engenharia Elétrica (2020) pela UFSM, onde atualmente realiza o doutorado em Engenharia Elétrica, atuando junto ao GEPOC. Suas
áreas de interesse incluem algoritmos de otimização e controle.

Renan Medke, Universidade Federal de Santa Maria

possui graduação em Engenharia Elétrica (2017) pela Universidade Federal do Pampa. Atualmente realiza o mestrado em Engenharia Elétrica na UFSM.

Olinto César Bassi de Araújo, Universidade Federal de Santa Maria

possui graduação e mestrado em Matemática pela Universidade Regional de Campanha (URCAMP) em 1991 e pela Universidade Regional do Noroeste do Rio Grande do Sul (UNIJUI) em 1998, respectivamente. Possui doutorado em Engenharia Elétrica pela Universidade Estadual de Campinas (Unicamp) em 2006. Também possui pós-graduação em Ciência da Computação. Hoje é professor na UFSM.

Rodrigo Varella Tambara, Universidade Federal de Santa Maria

possui graduação, mestrado e doutorado em Engenharia de Elétrica pela Universidade Federal de Santa Maria em 2008, 2010 e 2014, respectivamente. Atualmente é professor da UFSM. Seus interesses de pesquisa incluem controle adaptativo e aplicações de controle em eletrônica de potência.

Everson Mattos, Universidade Federal de Santa Maria

possui graduação em Engenharia de Elétrica (1999) pela Universidade Federal de Santa Catarina (UFSC) e mestrado e doutorado em Engenharia Elétrica (2018 e 2023) pela UFSM, atuando junto ao GEPOC. Suas áreas de interesse incluem algoritmos de otimização e
controle aplicado.  

Vinícius Foletto Montagner, Universidade Federal de Santa Maria

é engenheiro eletricista (1996) e mestre (2000) em Engenharia Elétrica pela UFSM, e doutor (2005) pela Unicamp. Atualmente é professor da UFSM. Seus interesses de pesquisa incluem controle robusto e aplicações de controle em eletrônica de potência.      

References

R. W. Erickson, Fundamentals of Power Electronics, Chapman & Hall, New York, NY, Jan. 1997. DOI: https://doi.org/10.1007/978-1-4615-7646-4

L. A. Maccari Jr., V. F. Montagner, H. Pinheiro, R. C. L. F. Oliveira, “Robust H2 control applied to boost converters: design, experimental validation and performance analysis”, IET Control Theory & Applications, vol. 6, no. 12, pp. 1881–1888, Aug. 2012. https://doi.org/10.1049/iet-cta.2011.0755 DOI: https://doi.org/10.1049/iet-cta.2011.0755

F. H. Dupont, V. F. Montagner, J. R. Pinheiro, H. Pinheiro, S. V. G. Oliveira, A. Péres, “Multiple controllers for boost converters under large load range: A GA and fuzzy logic based approach”, in 2010 IEEE International Conference on Industrial Technology, pp. 105–110, Mar. 2010. https://doi.org/10.1109/ICIT.2010.5472661 DOI: https://doi.org/10.1109/ICIT.2010.5472661

M. Veerachary, A. R. Saxena, “Optimized power stage design of low source current ripple fourth-order boost DC–DC converter: A PSO approach”, IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1491–1502, Mar. 2015. https://doi.org/10.1109/TIE.2014.2361316 DOI: https://doi.org/10.1109/TIE.2014.2361316

C. Olalla, R. Leyva, A. El Aroudi, P. Garces, I. Queinnec, “LMI robust control design for boost PWM converters”, IET Power Electronics, vol. 3, no. 1, pp. 75–85, Jan. 2010. https://doi.org/10.1049/iet-pel.2008.0271 DOI: https://doi.org/10.1049/iet-pel.2008.0271

K. J. Åström, T. Hägglund, PID Controllers: Theory, Design, and Tuning, Instrument Society of America, Research Triangle Park, NC, Jan. 1995. ISBN: 978-1556175169

X. Ding, Z. Qian, S. Yang, B. Cui, F. Peng, “A direct DC-link boost voltage PID-like fuzzy control strategy in Z-source inverter”, in Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, pp. 405 –411, Jun. 2008. https://doi.org/10.1109/PESC.2008.4591963 DOI: https://doi.org/10.1109/PESC.2008.4591963

M. Ge, M. Chiu, Q. Wang, “Robust PID controller design via LMI approach”, Journal of Process Control, vol. 21, pp. 3–13, Dec. 2002. https://doi.org/10.1016/S0959-1524(00)00057-3 DOI: https://doi.org/10.1016/S0959-1524(00)00057-3

L. Guo, J. Y. Hung, R. M. Nelms, “Evaluation of DSP-Based PID and fuzzy controllers for DC-DC converters”, IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2237–2248, Jun. 2009. https://doi.org/10.1109/TIE.2009.2016955 DOI: https://doi.org/10.1109/TIE.2009.2016955

Y. Nishikawa, N. Sannomiya, T. Ohta, H. Tanaka, “A method for autotuning of PID control parameters”, Automatica, vol. 20, no. 3, pp. 321–332, May 1984. https://doi.org/10.1016/0005-1098(84)90047-5 DOI: https://doi.org/10.1016/0005-1098(84)90047-5

R. Priewasser, M. Agostinelli, C. Unterrieder, S. Marsili, M. Huemer, “Modeling, Control, and Implementation of DC-DC Converters for Variable Frequency Operation”, IEEE Transactions on Power Electronics, vol. 29, no. 1, pp. 287–301, Jan. 2014. https://doi.org/10.1109/TPEL.2013.2248751 DOI: https://doi.org/10.1109/TPEL.2013.2248751

R. H. C. Takahashi, P. L. D. Peres, P. A. V. Ferreira, “Multiobjective H2/H∞ guaranteed cost PID design”, IEEE Control Systems Magazine, vol. 17, no. 5, pp. 37–47, Oct. 1997. https://doi.org/10.1109/37.621468 DOI: https://doi.org/10.1109/37.621468

E. N. Gonçalves, R. H. T. Reinaldo M. Palhares, “A novel approach for H2/H∞ robust PID synthesis for uncertain systems”, Journal of Process Control, vol. 18, no. 1, pp. 19 – 26, Jun. 2008. https://doi.org/10.1016/j.jprocont.2007.06.003 DOI: https://doi.org/10.1016/j.jprocont.2007.06.003

E. Alfaro-Cid, E. W. McGookin, D. J. Murray-Smith, “GA-optimised PID and pole placement real and simulated performance when controlling the dynamics of a supply ship”, IEE Proceedings - Control Theory and Applications, vol. 153, no. 2, pp. 228–236, Mar. 2006. https://doi.org/10.1049/ip-cta_20045128 DOI: https://doi.org/10.1049/ip-cta:20045128

S. Emami, M. B. Poudeh, S. Eshtehardiha, “Particle Swarm Optimization for improved performance of PID controller on Buck converter”, in IEEE International Conference onMechatronics and Automation, pp. 520–524, IEEE, Aug. 2008. https://doi.org/10.1109/ICMA.2008.4798810 DOI: https://doi.org/10.1109/ICMA.2008.4798810

M. H. Alham, M. M. Hassan, E. E.-D. A. El-Zahab, “Control of the Shunt Active Power Filter using artificial intelligence techniques”, in Control, Decision and Information Technologies, pp. 202–207, IEEE, May 2013. https://doi.org/10.1109/CoDIT.2013.6689544 DOI: https://doi.org/10.1109/CoDIT.2013.6689544

J. Kennedy, “Particle swarm optimization”, in Encyclopedia of machine learning, pp. 760–766, Springer, Jan. 2011. https://doi.org/10.1007/978-0-387-30164-8_630 DOI: https://doi.org/10.1007/978-0-387-30164-8_630

M. Liserre, A. Dell’Aquila, F. Blaabjerg, “Genetic algorithm-based design of the active damping for an LCL-filter three-phase active rectifier”, IEEE Transactions on Power Electronics, vol. 19, no. 1, pp. 76 – 86, Jan. 2004. https://doi.org/10.1109/TPEL.2003.820540 DOI: https://doi.org/10.1109/TPEL.2003.820540

S. A. O. Silva, L. P. Sampaio, F. M. Oliveira, F. R. Durand, “Sistema fotovoltaico com condicionamento ativo de energia usando MPPT baseado em PSO e malha feed-forward de controle de tensão do barramento CC”, Eletrônica de Potência, vol. 21, no. 2, pp. 105–116, Jun. 2016. https://doi.org/10.18618/REP.2016.2.2615 DOI: https://doi.org/10.18618/REP.2016.2.2615

L. C. Borin, C. R. D. Osório, G. Koch, T. S. Gabbi, R. C. L. F. de Oliveira, V. F. Montagner, “Robust control design procedure based on particle swarm optimization and Kharitonov’s theorem with an application for PMSMs”, Revista Eletrônica de Potência, vol. 25, no. 2, pp. 219–229, Jun. 2020. https://doi.org/10.18618/REP.2020.2.0008 DOI: https://doi.org/10.18618/REP.2020.2.0008

F. P. Scalcon, T. S. Gabbi, R. P. Vieira, H. A. Gründling, “Melhoria de Desempenho de Motores de Relutância Variável Via Algoritmo de Enxame de Partículas”, Revista Eletrônica de Potência, vol. 25, no. 4, pp. 492–502, Oct. 2020. https://doi.org/10.18618/REP.2020.4.0038 DOI: https://doi.org/10.18618/REP.2020.4.0038

S. E. De León-Aldaco, H. Calleja, J. A. Alquicira, “Metaheuristic optimization methods applied to power converters: A review”, IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 6791–6803, Dec. 2015. https://doi.org/10.1109/TPEL.2015.2397311 DOI: https://doi.org/10.1109/TPEL.2015.2397311

K. Vasudevan, “Applications of artificial intelligence in power electronics and drives systems: a comprehensive review”, Journal of Power Electronics, vol. 1, no. 1, Jan. 2023. https://doi.org/10.17605/OSF.IO/68SQR

S. Zhao, F. Blaabjerg, H. Wang, “An overview of artificial intelligence applications for power electronics”, IEEE Transactions on Power Electronics, vol. 36, no. 4, pp. 4633–4658, Sep. 2020. https://doi.org/10.1109/TPEL.2020.3024914 DOI: https://doi.org/10.1109/TPEL.2020.3024914

R. Eberhart, J. Kennedy, “A new optimizer using particle swarm theory”, in In Proc. of the Sixth International Symposium on Micro Machine and Human Science., pp. 39–43, IEEE, Oct. 1995. https://doi.org/10.1109/MHS.1995.494215 DOI: https://doi.org/10.1109/MHS.1995.494215

J. B. L. Fermeiro, J. A. N. Pombo, M. R. A. Calado, S. J. P. S. Mariano, “Evaluation of a particle swarm optimization controller for DC-DC boost converters”, in 9th International Conference on Compatibility and Power Electronics, pp. 179–184, IEEE, Jun. 2015. https://doi.org/10.1109/CPE.2015.7231069 DOI: https://doi.org/10.1109/CPE.2015.7231069

S. Vadi, F. B. Gurbuz, S. Sagiroglu, R. Bayindir, “Optimization of PI based buck-boost converter by particle swarm optimization algorithm”, in 9th International Conference on Smart Grid, pp. 295–301, IEEE, Jun. 2021. https://doi.org/10.1109/icSmartGrid52357.2021.9551229 DOI: https://doi.org/10.1109/icSmartGrid52357.2021.9551229

I. Bouchriha, A. B. Ghanem, K. Nouri, “A Comparison of Sliding Mode Control and Particle Swarm Optimization for Photovoltaic System under Partially Shaded Condition”, in 4th International Conference on Advanced Systems and Emergent Technologies, pp. 310–314, IEEE, Dec. 2020. https://doi.org/10.1109/IC_ASET49463.2020.9318254 DOI: https://doi.org/10.1109/IC_ASET49463.2020.9318254

J. D. Kumar, K. Mantosh, M. S. Bhaskar, P. Sanjeevikumar, J. B. H. Nielsen, Z. Leonowicz, “Investigation Studies of DC-DC Boost Converter with Proportional-Integral-Derivative Controller Using Optimization Techniques”, in IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe, pp. 1–5, IEEE, Jun. 2020. https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160614 DOI: https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160614

M. H. Rezaei, H. Mirshekali, R. Dashti, R. Samsami, R. Panahidoost, H. R. Shaker, “Machine Learning-Based Control Framework For Boost Converters Applying Particle Swarm Optimization”, in International Conference on Electrical, Computer, Communications and Mechatronics Engineering, pp. 1–5, IEEE, Nov. 2022. https://doi.org/10.1109/ICECCME55909.2022.9988004 DOI: https://doi.org/10.1109/ICECCME55909.2022.9988004

A. Mehmood, A. Ali, et al., “Comparative analysis of different control techniques on interleaved boost converter in discrete time domain”, in 16th International Bhurban Conference on Applied Sciences and Technology, pp. 366–370, IEEE, Jan. 2019. https://doi.org/10.1109/IBCAST.2019.8667151 DOI: https://doi.org/10.1109/IBCAST.2019.8667151

J. G. Kassakian, M. F. Schlecht, G. C. Verghese, Principles of Power Electronics, Addison-Wesley, Boston, MA, Jan. 1991. ISBN: 978-0201096897

S. Buso, P. Mattavelli, Digital Control in Power Electronics, Morgan & Claypool Publishers, Dec. 2006. https://doi.org/10.1007/978-3-031-02495-5 DOI: https://doi.org/10.1007/978-3-031-02495-5

E. Mezura-Montes, C. A. C. Coello, “Constraint-handling in nature-inspired numerical optimization: past, present and future”, Swarm and Evolutionary Computation, vol. 1, no. 4, pp. 173–194, Oct. 2011. https://doi.org/10.1016/j.swevo.2011.10.001 DOI: https://doi.org/10.1016/j.swevo.2011.10.001

H. Cao, X. Zheng, Z. Liu, “LCL Filter Parameter Optimization Design Based on Multi-Objective Particle Swarm”, in IEEE Conference on Ind. Elec. and Applications, pp. 2467–2472, Jun. 2019. https://doi.org/10.1109/ICIEA.2019.8833889 DOI: https://doi.org/10.1109/ICIEA.2019.8833889

P. Wang, W. Wei, S. Jiang, W. Wang, D. Xu, “A PSO Based Optimal Design Method of LCL Filter for Single-phase Grid-connected Inverter with Multiple Conditions Constraint”, in 24th International Conference on Electrical Machines and Systems, pp. 2116–2120, Oct. 2021. https://doi.org/10.23919/ICEMS52562.2021.9634316 DOI: https://doi.org/10.23919/ICEMS52562.2021.9634316

Y. Shi, R. C. Eberhart, “Empirical study of particle swarm optimization”, in Proceedings of the congress on evolutionary computation, vol. 3, pp. 1945–1950, IEEE, Jul. 1999. https://doi.org/10.1109/CEC.1999.785511 DOI: https://doi.org/10.1109/CEC.1999.785511

Y. Shi, R. C. Eberhart, “Parameter selection in particle swarm optimization”, in Evolutionary Programming VII: 7th International Conference, pp. 591–600, Springer, Dec. 1998. https://doi.org/10.1007/bfb0040810 DOI: https://doi.org/10.1007/BFb0040810

J. C. Bansal, P. Singh, M. Saraswat, A. Verma, S. S. Jadon, A. Abraham, “Inertia weight strategies in particle swarm optimization”, in 2011 Third world congress on nature and biologically inspired computing, pp. 633–640, IEEE, Oct. 2011. https://doi.org/10.1109/NaBIC.2011.6089659 DOI: https://doi.org/10.1109/NaBIC.2011.6089659

M. E. H. Pedersen, “Good parameters for particle swarm optimization”, Hvass Lab, Copenhagen, Denmark, pp. 1551–3203, Jan. 2010.

R. C. Dorf, R. H. Bishop, Modern control systems, 11 ed., Prentice Hall, Aug. 2008. https://doi.org/10.5555/557022

Published

2024-04-07

How to Cite

[1]
R. U. M. Viaro, “Controladores PID com desempenho otimizado aplicados a conversores boost com incertezas paramétricas na carga”, Eletrônica de Potência, vol. 29, p. e202405, Apr. 2024.

Issue

Section

Original Papers