Comparação de estratégias de controle preditivo e direto de torque para motores de indução
DOI:
https://doi.org/10.18618/REP.2024.1.0035Keywords:
Controle Direto de Torque, Controle Preditivo Baseado em Modelo, Controle Preditivo de Torque, Motor de indução, Controle Preditivo ModuladoAbstract
As mudanças climáticas e a tendência de eletrificação causada pelo uso de energias renováveis incentiva a pesquisa em eletrificação de sistemas e direciona parte do interesse a tecnologias de acionamentos elétricos. Dentre os motores usados em acionamentos modernos, os motores de indução trifásicos mostram-se competitivos dado o seu baixo custo, elevada robustez e maturidade tecnológica. Este artigo explora métodos de controle direto de torque e fluxo, com destaque para controles preditivos, promissores por sua resposta dinâmica rápida e flexibilidade com não linearidades. São analisados resultados experimentais do DTC, PTC, PTC-DSVM e MPTC na mesma bancada. Os resultados demonstram por meio das respostas dinâmica, em regime e THD as diferenças entre estratégias e mostram que a frequência fixa do MPTC não se relaciona diretamente à melhor qualidade de energia no acionamento. O custo computacional também é medido para complemento das análises.
Downloads
References
F. Un-Noor, S. Padmanaban, L. Mihet-Popa, M. N. Mollah, E. Hossain, “A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development”, Energies, vol. 10, no. 8, 2017, https://doi.org/doi:10.3390/en10081217. DOI: https://doi.org/10.3390/en10081217
A. T. de Almeida, F. J. T. E. Ferreira, G. Baoming, “Beyond Induction Motors—Technology Trends to Move Up Efficiency”, IEEE Transactions on Industry Applications, vol. 50, no. 3, pp. 2103–2114, 2014, doi: https://doi.org/10.1109/TIA.2013.2288425. DOI: https://doi.org/10.1109/TIA.2013.2288425
A. E. Fitzgerald, C. Kingsley, S. D. Umans, Máquinas Elétricas de Fitzgerald e Kingsley, 7 ed., AMGH, 2014.
S. Jia, P. Zhang, D. Liang, M. Dai, J. Liu, “Design and Comparison of Three Different Types of IE4 Efficiency Machines”, in 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), pp. 1–4, 2019, doi: https://doi.org/10.1109/ICEMS.2019.8921786. DOI: https://doi.org/10.1109/ICEMS.2019.8921786
C. H. T. Lee, W. Hua, T. Long, C. Jiang, L. V. Iyer, “A Critical Review of Emerging Technologies for Electric and Hybrid Vehicles”, IEEE Open Journal of Vehicular Technology, vol. 2, pp. 471–485, 2021, doi: https://doi.org/10.1109/OJVT.2021.3138894. DOI: https://doi.org/10.1109/OJVT.2021.3138894
D. Mohanraj, J. Gopalakrishnan, B. Chokkalingam, L. Mihet-Popa, “Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple—Review”, IEEE Access, vol. 10, pp. 73635–73674, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3187515. DOI: https://doi.org/10.1109/ACCESS.2022.3187515
I. Takahashi, T. Noguchi, “A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor”, IEEE Transactions on Industry Applications, vol. IA-22, no. 5, pp. 820–827, 1986, doi: https://doi.org/10.1109/TIA.1986.4504799. DOI: https://doi.org/10.1109/TIA.1986.4504799
J. Rodriguez, P. Cortes, Predictive control of power converters and electrical drives, vol. 40, John Wiley & Sons, 2012. DOI: https://doi.org/10.1002/9781119941446
P. Karamanakos, T. Geyer, “Guidelines for the Design of Finite Control Set Model Predictive Controllers”, IEEE Transactions on Power Electronics, vol. 35, no. 7, pp. 7434–7450, 2020, doi: https://doi.org/10.1109/TPEL.2019.2954357. DOI: https://doi.org/10.1109/TPEL.2019.2954357
A. J. S. Filho, “Model Predictive Control for DoublyFed Induction Generators and Three-Phase Power Converters”, Model Predictive Control for Doubly Fed Induction Generators and Three-Phase Power Converters, pp. 1–219, 1 2022, doi: https://doi.org/10.1016/B978-0-32-390964-8.00002-6. DOI: https://doi.org/10.1016/B978-0-32-390964-8.00010-5
M. Amiri, J. Milimonfared, D. A. Khaburi, “Predictive Torque Control Implementation for Induction Motors Based on Discrete Space Vector Modulation”, IEEE Transactions on Industrial Electronics, vol. 65, no. 9, pp. 6881–6889, 2018, doi: https://doi.org/10.1109/TIE.2018.2795589. DOI: https://doi.org/10.1109/TIE.2018.2795589
I. Osman, D. Xiao, M. F. Rahman, M. Norambuena, J. Rodriguez, “Discrete Space Vector Modulation Based Model Predictive Flux Control With Reduced Switching Frequency for IM Drive”, IEEE Transactions on Energy Conversion, vol. 36, no. 2, pp. 1357–1367, 2021, doi: https://doi.org/10.1109/TEC.2020.3033356. DOI: https://doi.org/10.1109/TEC.2020.3033356
W. Zhang, Y. Yang, M. Fan, L. He, A. Ji, Y. Xiao, H. Wen, X. Zhang, T. Yang, S. Mekhilef, J. Rodriguez, “An Improved Model Predictive Torque Control for PMSM Drives Based on Discrete Space Vector Modulation”, IEEE Transactions on Power Electronics, vol. 38, no. 6, pp. 7535–7545, 2023, doi: https://doi.org/10.1109/TPEL.2023.3257399. DOI: https://doi.org/10.1109/TPEL.2023.3257399
A. Bhaumik, S. Das, “Virtual voltage vector based predictive current control of speed sensorless induction motor drives”, ISA Transactions, vol. 133, pp. 495–504, 2023, doi: https://doi.org/10.1016/j.isatra.2022.07.007. DOI: https://doi.org/10.1016/j.isatra.2022.07.007
M. Rivera, F. Morales, C. Baier, J. Muñoz, L. Tarisciotti, P. Zanchetta, P. Wheeler, “A modulated model predictive control scheme for a two-level voltage source inverter”, in 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 2224–2229, 2015, doi: https://doi.org/10.1109/ICIT.2015.7125425. DOI: https://doi.org/10.1109/ICIT.2015.7125425
L. Tarisciotti, P. Zanchetta, A. Watson, J. C. Clare, M. Degano, S. Bifaretti, “Modulated Model Predictive Control for a Three-Phase Active Rectifier”, IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1610–1620, 2015, doi: https://doi.org/10.1109/TIA.2014.2339397. DOI: https://doi.org/10.1109/TIA.2014.2339397
B. V. Comarella, D. Carletti, I. Yahyaoui, L. F. Encarnação, “Theoretical and Experimental Comparative Analysis of Finite Control Set Model Predictive Control Strategies”, Electronics, vol. 12, no. 6, 2023, doi: https://doi.org/10.3390/electronics12061482. DOI: https://doi.org/10.3390/electronics12061482
V. Yaramasu, A. Dekka, J. Rodriguez, “Modulated Model Predictive Torque and Current Control of Squirrel Cage Induction Generator-Based Wind Power Generation System”, in 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–7, 2020, doi: https://doi.org/10.1109/COMPEL49091.2020.9265656. DOI: https://doi.org/10.1109/COMPEL49091.2020.9265656
F. Yu, K. Li, Z. Zhu, X. Liu, “An Over-Modulated Model Predictive Current Control for Permanent Magnet Synchronous Motors”, IEEE Access, vol. 10, pp. 40391–40401, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3166511. DOI: https://doi.org/10.1109/ACCESS.2022.3166511
H. Aberkane, D. Sakri, D. Rahem, “Comparative study of different variants of direct torque control applied to induction motor”, in 2018 9th International Renewable Energy Congress (IREC), pp. 1–6, 2018, doi: https://doi.org/10.1109/IREC.2018.8362484. DOI: https://doi.org/10.1109/IREC.2018.8362484
K. A. Tibamoso, N. A. Oñate, “Model predictive control on induction machine for electric traction”, in 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 1–5, 2017, doi: https://doi.org/10.1109/CHILECON.2017.8229626. DOI: https://doi.org/10.1109/CHILECON.2017.8229626
I. Oliani, T. Baldim Dos Santos, R. B. F. Figueiredo, D. Albiero, A. Pelizari, A. Joãozinho Sguarezi Filho, “Robust Finite Control Set Current Control for Induction Motor Using Deadbeat Approach in Synchronous Reference Frame”, Eletrônica de Potência, vol. 28, no. 01, pp. 28–35, Mar. 2023, doi: https://doi.org/10.18618/REP.2023.1.0041. DOI: https://doi.org/10.18618/REP.2023.1.0041
R. Figueiredo, A. Lunardi, A. J. Sguarezi, A. Pelizari, “CONTROLE PREDITIVO ROBUSTO COM CONJUNTO FINITO DE ESTADOS PARA MÁQUINAS DE INDUÇÃO”, REVISTA ELETRÔNICA DE POTÊNCIA, vol. 27, no. 3, pp.208–215, 2022, doi: https://doi.org/10.18618/REP.2022.3.0027. DOI: https://doi.org/10.18618/REP.2022.3.0027
M. F. Elmorshedy, W. Xu, F. F. M. El-Sousy, M. R. Islam, A. A. Ahmed, “Recent Achievements in Model Predictive Control Techniques for Industrial Motor: A Comprehensive State-of-the-Art”, IEEE Access, vol. 9, pp. 58170–58191, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3073020. DOI: https://doi.org/10.1109/ACCESS.2021.3073020
I. Osman, D. Xiao, K. S. Alam, S. M. S. I. Shakib, M. P. Akter, M. F. Rahman, “Discrete Space Vector Modulation-Based Model Predictive Torque Control With No Suboptimization”, IEEE Transactions on Industrial Electronics, vol. 67, no. 10, pp. 8164–8174, Oct. 2020, doi: https://doi.org/10.1109/TIE.2019.2946559. DOI: https://doi.org/10.1109/TIE.2019.2946559
W. Tian, Q. Yang, X. Gao, P. Karamanakos, X. Yin, R. Kennel, M. L. Heldwein, “Fast Indirect Model Predictive Control for Variable Speed Drives”, IEEE Transactions on Power Electronics, vol. 38, no. 11, pp. 14475–14491, 2023, doi: https://doi.org/10.1109/TPEL.2023.3307773. DOI: https://doi.org/10.1109/TPEL.2023.3307773
P. Cortes, J. Rodriguez, C. Silva, A. Flores, “Delay Compensation in Model Predictive Current Control of a Three-Phase Inverter”, IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 1323–1325, 2012, doi: https://doi.org/10.1109/TIE.2011.2157284. DOI: https://doi.org/10.1109/TIE.2011.2157284
T. Santos, I. Oliani, R. Figueiredo, A. Pelizari, A. J. Sguarezi Filho, “Avaliação do Impacto da Robustez na Estimação de Fluxo Magnético para os Controles Preditivos de Torque e Corrente”, in SBSE 2022 - IX Simpósio Brasileiro de Sistemas Elétricos, 2022, doi: https://doi.org/10.20906/sbse.v2i1.2890 DOI: https://doi.org/10.20906/sbse.v2i1.2890