Impact of Optimization Algorithm Choice on Nonlinear Global Model for Photovoltaic Energy Generation Forecasting
DOI:
https://doi.org/10.18618/REP.2005.1.063070Keywords:
Energy Production, GNLM, NMAEP, Optimization Algorithms, PhotovoltaicAbstract
The article explores the relevance of choosing the optimization algorithm to obtain accurate parameter estimates in photovoltaic (PV) systems, with the aim of improving the energy efficiency of solar energy. Advances in photovoltaic module analysis models have resulted in the development of global non-linear models (GNLM), which offer a more accurate representation of the I-V characteristics under various environmental conditions. Metaheuristic algorithms have stood out for their ability to handle the complexity of these nonlinear models. Therefore, the careful choice of the optimization algorithm is fundamental to guarantee consistent and reliable results in the estimation of the model parameters, contributing to maximizing energy efficiency. The study seeks to investigate whether different optimization tools can improve the accuracy and efficiency of parameter estimation, resulting in improved modeling and performance prediction of PV systems in different conditions.
Downloads
References
[ 1] I. A. Ibrahim, et al., “A hybrid wind driven-based fruit fly optimization algorithm for identifying the parameters of a double-diode photovoltaic cell model considering degradation effects”, SustainableEnergy Technologies and Assessments, vol. 50, p. 101685, 2022, doi:https://doi.org/10.1016/j.seta.2021.101685. DOI: https://doi.org/10.1016/j.seta.2021.101685
[ 2] A. Ramadan, others., “A New Application of Chaos Game Optimization Algorithm for Parameters Extraction of Three Diode Photovoltaic Model”, IEEE Access, vol. 9, pp. 51582–51594, 2021, doi:https://doi.org/10.1109/ACCESS.2021.3069939. DOI: https://doi.org/10.1109/ACCESS.2021.3069939
[ 3] E. A. Silva, et al., “An Eight-Parameter Adaptive Model for the Single Diode Equivalent Circuit Based on the Photovoltaic Module’s Physics”, IEEE Journal of Photovoltaics, vol. 7, no. 4, pp. 1115–1123, 2017, doi:https://doi.org/10.1109/JPHOTOV.2017.2703778. DOI: https://doi.org/10.1109/JPHOTOV.2017.2703778
[ 4] C. Kumar, D. M. Mary, “A novel chaotic-driven Tuna Swarm Optimizer with Newton-Raphson method for parameter identification of three-diode equivalent circuit model of solar photovoltaic cells/modules”, Optik, vol. 264, p. 169379, 2022, doi:https://doi.org/10.1016/j.ijleo.2022.169379. DOI: https://doi.org/10.1016/j.ijleo.2022.169379
[ 5] S. R. Fahim, et al., “A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction”, Energies, vol. 15, no. 23, 2022, doi:https://doi.org/10.3390/en15238941. DOI: https://doi.org/10.3390/en15238941
[ 6] A. Gholami, et al., “Step-By-Step Guide to Model Photovoltaic Panels: An Up-To-Date Comparative Review Study”, IEEE Journal of Photovoltaics, vol. 12, pp. 1–14, 07 2022, doi:https://doi.org/10.1109/JPHOTOV.2022.3169525. DOI: https://doi.org/10.1109/JPHOTOV.2022.3169525
[ 7] D. de Oliveira Pimentel, M. Cabral Cavalcanti, F. Bradaschia, E. Jos ́e Barbosa, L. Rodrigues Limongi, “Parameters Estimation of Photovoltaic Modules Using Optimization Methods Based on Metaheuristics”, in 2021 Brazilian Power Electronics Conference (COBEP), pp. 1–7, 2021, doi:https://doi.org/10.1109/COBEP53665.2021.9684100. DOI: https://doi.org/10.1109/COBEP53665.2021.9684100
[ 8] A. J. Nascimento, M. C. Cavalcanti, F. Bradaschia, E. A. Silva, L. Michels, L. P. Pietta, “Parameter estimation technique for double-diode model of photovoltaic modules”, in 2017 Brazilian Power Electronics Conference (COBEP), pp. 1–6, 2017, doi:https://doi.org/10.1109/COBEP.2017.8257242. DOI: https://doi.org/10.1109/COBEP.2017.8257242
[ 9] H. Lu, et al., “Output performance prediction of PV modules based on power-law model from manufacturer datasheet”, Journal of Renewable and Sustainable Energy, vol. 14, 04 2022, doi:https://doi.org/10.1063/5.0088190. DOI: https://doi.org/10.1063/5.0088190
[ 10] D. Mathew, et al., “Wind-Driven Optimization Technique for Estimation of Solar Photovoltaic Parameters”, IEEE Journal of Photovoltaics, vol. 8, no. 1, pp. 248–256, 2018, doi:https://doi.org/10.1109/JPHOTOV.2017.2769000. DOI: https://doi.org/10.1109/JPHOTOV.2017.2769000
[ 11] P. Hao, Y. Zhang, “An Improved Method for Parameter Identification and Performance Estimation of PV Modules From Manufacturer Datasheet Based On Temperature-Dependent Single-Diode Model”, IEEE Journal of Photovoltaics, vol. 11, no. 6, pp. 1446–1457, 2021, doi:https://doi.org/10.1109/JPHOTOV.2021.3114592. DOI: https://doi.org/10.1109/JPHOTOV.2021.3114592
[ 12] Y. Zhang, et al., “A novel method for performance estimation of photovoltaic module without setting reference condition”, International Journal of Electrical Power & Energy Systems, vol. 134, p. 107439, 2022, doi:https://doi.org/10.1016/j.ijepes.2021.107439. DOI: https://doi.org/10.1016/j.ijepes.2021.107439
[ 13] Y. Zhang, et al., “Modelling and estimating performance for PV module under varying operating conditions independent of reference condition”, Applied Energy, vol. 310, p. 118527, 2022, doi:https://doi.org/10.1016/j.apenergy.2022.118527. DOI: https://doi.org/10.1016/j.apenergy.2022.118527
[ 14] M. Zaimi, et al., “Numerical method and new analytical models for determining temporal changes of model-parameters to predict maximum power and efficiency of PV module operating outdoor under arbitrary conditions”, Energy Conversion and Management, vol. 220, p. 113071, 2020, doi:https://doi.org/10.1016/j.enconman.2020.113071. DOI: https://doi.org/10.1016/j.enconman.2020.113071
[ 15] A. K. P. Kodi, P. Geethanjali, “Drone Squadron Optimization Technique Based Solar Photovoltaic Parameter Extraction for Three Diode Model”, Social Science Research Network, 2022, doi:https://doi.org/10.2139/ssrn.4139046. DOI: https://doi.org/10.2139/ssrn.4139046
[ 16] V. V. de Melo, W. Banzhaf, “Drone Squadron Optimization: a novel self-adaptive algorithm for global numerical optimization”, Neural Eletr ˆonica de Pot ˆencia, Rio de Janeiro, v. 29, e202414, 2024. 9 Cavalcante Jr. et al.: Impact of Optimization Algorithm Choice on Nonlinear Global Model for Photovoltaic Energy Generation Forecasting Computing and Applications, vol. 30, 2018, doi:https://doi.org/10.1007/s00521-017-2881-3. DOI: https://doi.org/10.1007/s00521-017-2881-3
[ 17] M. Rawa, et al., “Estimation of Parameters of Different Equivalent Circuit Models of Solar Cells and Various Photovoltaic Modules Using Hybrid Variants of Honey Badger Algorithm and Artificial Gorilla Troops Optimizer”, Mathematics, vol. 10, no. 7, 2022,doi:https://doi.org/10.3390/math10071057. DOI: https://doi.org/10.3390/math10071057
[ 18] A. Raafat, “bacteria Foraging Optimization”, https://www.mathworks.com/matlabcentral/fileexchange/52966-artificial-bee-colony-abc-in-matlab, [ Online; accessed August 25, 2024].
[ 19] S. Zhao, et al., “Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications”, Engineering Applications of Artificial Intelligence, vol. 114, p. 105075, 2022,doi:https://doi.org/10.1016/j.engappai.2022.105075. DOI: https://doi.org/10.1016/j.engappai.2022.105075
[ 20] L. Wang, et al., “Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems”, Engineering Applications of Artificial Intelligence, vol. 114, p.105082, 2022, doi:https://doi.org/10.1016/j.engappai.2022.105082. DOI: https://doi.org/10.1016/j.engappai.2022.105082
[ 21] B. Abdollahzadeh, F. S. Gharehchopogh, S. Mirjalili, “African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems”, Computers Industrial Engineering, vol. 158, p. 107408, 2021, doi:https://doi.org/10.1016/j.cie.2021.107408. DOI: https://doi.org/10.1016/j.cie.2021.107408
[ 22] M. Khishe, M. Mosavi, “Chimp optimization algorithm”, Expert Systems with Applications, vol. 149, p. 113338, 2020, doi:https://doi.org/10.1016/j.eswa.2020.113338. DOI: https://doi.org/10.1016/j.eswa.2020.113338
[ 23] Peraza-V ́azquez, et al., “A Bio-Inspired Method for Engineering Design Optimization Inspired by Dingoes Hunting Strategies”, Mathematical Problems in Engineering, 2021, doi:https://doi.org/10.1155/2021/9107547. DOI: https://doi.org/10.1155/2021/9107547
[ 24] J.-K. Xue, B. Shen, “Dung beetle optimizer: a new meta-heuristic algorithm for global optimization”, The Journal of Supercomputing, vol. 79, 11 2022, doi:https://doi.org/10.1007/s11227-022-04959-6. DOI: https://doi.org/10.1007/s11227-022-04959-6
[ 25] T. S. Zervoudakis, K., “A global optimizer inspired from the survival strategies of flying foxes”, Engineering with Computers, vol. 39, 2023, doi:https://doi.org/10.1007/s00366-021-01554-w. DOI: https://doi.org/10.1007/s00366-021-01554-w
[ 26] L. Xie, et al., “Tuna Swarm Optimization: A Novel Swarm-Based Metaheuristic Algorithm for Global Optimization”, Computational Intelligence and Neuroscience, 2021, doi:https://doi.org/10.1155/2021/9210050. DOI: https://doi.org/10.1155/2021/9210050
[ 27] E. Trojovsk ́a, et al., “Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm”, IEEE Access, vol. 10, pp. 49445–49473, 2022, doi:https://doi.org/10.1109/ACCESS.2022.3172789. DOI: https://doi.org/10.1109/ACCESS.2022.3172789
[ 28] M. Qais, H. Hasanien, S. Alghuwainem, “Transient search optimization: a new meta-heuristic optimization algorithm”, Applied Intelligence, vol. 50, 11 2020, doi:https://doi.org/10.1007/s10489-020-01727-y. DOI: https://doi.org/10.1007/s10489-020-01727-y
[ 29] S. Talatahari, M. Azizi, “Optimization of constrained mathematical and engineering design problems using chaos game optimization”, Computers Industrial Engineering, vol. 145, p. 106560, 2020, doi:https://doi.org/https://doi.org/10.1016/j.cie.2020.106560. DOI: https://doi.org/10.1016/j.cie.2020.106560
[ 30] H. Nunes, et al., “A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization”, Applied Energy, vol. 211, pp. 774–791, 2018, doi:https://doi.org/10.1016/j.apenergy.2017.11.078. DOI: https://doi.org/10.1016/j.apenergy.2017.11.078
[ 31] R. Aalloul, et al., “Emerging Parameters Extraction Method of PV Modules Based on the Survival Strategies of Flying Foxes Optimization (FFO)”, Energies, vol. 16, no. 8, 2023, doi:https://doi.org/10.3390/en16083531. DOI: https://doi.org/10.3390/en16083531
[ 32] V. Beiranvand, W. Hare, Y. Lucet, “Best practices for comparing optimization algorithms”, Optimization and Engineering, vol. 18, no. 4, pp. 815–848, 2017, doi:https://doi.org/10.1007/s11081-017-9366-1. DOI: https://doi.org/10.1007/s11081-017-9366-1
[ 33] V. M. Cavalcante, et al., “Effect of Optimization Algorithm Choice on Photovoltaic Module Modeling Performance”, in 2023 IEEE 8th Southern Power Electronics Conference (SPEC), pp. 1–8, 2023, doi:https://doi.org/10.1109/SPEC56436.2023.10407366. DOI: https://doi.org/10.1109/SPEC56436.2023.10407366
[ 34] M. Wang, et al., “An online optimization method for extracting parameters of multi-parameter PV module model based on adaptive Levenberg-Marquardt algorithm”, Energy Conversion and Management, vol. 245, p. 114611, 2021, doi:https://doi.org/10.1016/j.enconman.2021.114611. DOI: https://doi.org/10.1016/j.enconman.2021.114611
[ 35] Z. Lang, Y. Zhang, “Parameter identification and performance estimation for PV modules based on reduced forms model”, Journal of Renewable and Sustainable Energy, vol. 12, p. 053703, 09 2020, doi:https://doi.org/https://doi.org/10.1063/5.0019511. DOI: https://doi.org/10.1063/5.0019511
[ 36] E. Silva, Proposta de um modelo global não-linear para caracterização do comportamento el ́etrico de c ́elulas fotovoltaicas, Tese, Universidade Federal de Pernambuco, abril 2019.
[ 37] B. Marion, et al., “New data set for validating PV module performance models”, , 06 2014, doi:https://doi.org/10.1109/PVSC.2014.6925171. DOI: https://doi.org/10.1109/PVSC.2014.6925171
[ 38] Yarpiz, M. Heris, “Artificial Bee Colony (ABC) in MATLAB”, https://www.mathworks.com/matlabcentral/fileexchange/52966-artificial-bee-colony-abc-in-matlab, [ Online; accessed August 31,2023].
[ 39] W. Zhao, L. Wang, Z. Zhang, “Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm”, Neural Computing and Applications, vol. 32, 2020, doi:https://doi.org/10.1007/s00521-019-04452-x. DOI: https://doi.org/10.1007/s00521-019-04452-x
[ 40] Z. Bayraktar, “The Adaptive Wind Driven Optimization Algorithm”, https://www.mathworks.com/matlabcentral/fileexchange/57924-the-adaptive-wind-driven-optimization-algorithm, [ Online; accessed August 31, 2023], 2015.
[ 41] G. Evers, “Particle Swarm Optimization Research Toolbox”, https://www.mathworks.com/matlabcentral/fileexchange/28291-particle-swarm-optimization-research-toolbox, [ Online; accessed
August 31, 2023].
[ 42] S. Mirjalili, “Grey Wolf Optimizer (GWO)”, https://www.mathworks.com/matlabcentral/fileexchange/44974-grey-wolf-optimizer-gwo, [ Online; accessed August 31, 2023].
[ 43] V. Torczon, “On the Convergence of Pattern Search Algorithms”, SIAM Journal on Optimization, vol. 7, no. 1, pp. 1–25, 1997. DOI: https://doi.org/10.1137/S1052623493250780
[ 44] Z. Bayraktar, “The Wind Driven Optimization (WDO) algorithm”, https://www.mathworks.com/matlabcentral/fileexchange/44865-the-wind-driven-optimization-wdo-algorithm, [ Online; accessed August 31, 2023], 2010.
[ 45] S. Mirjalili, “The Whale Optimization Algorithm (WOA)”, https://www.mathworks.com/matlabcentral/fileexchange/55667-the-whale-optimization-algorithm, [ Online; accessed August 31,2023]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Valdemar M. Cavalcante Junior, Tiago A. Fernandes, Renato Andrade Freitas, Nayara A. de M. S. Amâncio, Fabricio Bradaschia, Marcelo Cabral Cavalcanti
This work is licensed under a Creative Commons Attribution 4.0 International License.