Bidirectional Switched Capacitor DC-DC Converter Based on Three Level Connection
DOI:
https://doi.org/10.18618/REP.2005.2.045052Keywords:
Bidirectional current flow, dc-dc converter, modular circuit, switched capacitorAbstract
In this paper a pure bidirectional switched capacitor DC-DC converter is proposed. This structure of the proposed converter allows parallel and cascade modular connection, which allows its use in different applications. The basic cell of the proposed topology is evaluated in detail in this paper. For this, characteristics of the principle of operation for step-up and step-down mode, voltage gain, voltage and current stresses, comparative evaluations with similar topologies are presented. To validate the effectiveness of the proposed converter, a prototype was built in laboratory and it achieves a 94.8 % peak efficiency with a switching frequency equal to 20 kHz.
Downloads
References
H. Chung, W. Chow, “Development of switched-capacitor-based DC/DC converter with bi-directional power flow”, in 1999 IEEE International Symposium on Circuits and Systems (ISCAS), vol. 5, pp. 202–205 vol.5, 1999, https://doi.org/10.1109/ISCAS.1999.777545. DOI: https://doi.org/10.1109/ISCAS.1999.777545
H. Chung, A. Ioinovici, “Development of a generalized switchedcapacitor DC/DC converter with bi-directional power flow”, in 2000 IEEE International Symposium on Circuits and Systems (ISCAS), vol. 3, pp. 499–502 vol.3, 2000, https://doi.org/10.1109/ISCAS.2000.856106. DOI: https://doi.org/10.1109/ISCAS.2000.856106
K.-Y. Lee, Y.-S. Lai, “A novel magnetic-less bi-directional dc-dc converter”, in 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004, vol. 2, pp. 1014–1017 Vol. 2, 2004, https://doi.org/10.1109/IECON.2004.1431713. DOI: https://doi.org/10.1109/IECON.2004.1431713
Z. Amjadi, S. S. Williamson, “Design and implementation of a bidirectional HEV energy management strategy using a switched capacitor Luo converter”, in CCECE 2010, pp. 1–5, 2010, https://doi.org/10.1109/CCECE.2010.5575232. DOI: https://doi.org/10.1109/CCECE.2010.5575232
Z. Amjadi, S. S. Williamson, “Efficiency modeling and comparison of switched capacitor, Luo, and interleaved switched capacitor converters for electric vehicle Energy storage systems”, in IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, pp. 1811–1817, 2010, https://doi.org/10.1109/IECON.2010.5675402. DOI: https://doi.org/10.1109/IECON.2010.5675402
S. Pongswatd, K. Smerpituk, P. Julsereewong, K. Eguchi, H. Sasaki, “Design of fractional conversion ratio SC DC-DC converters”, in 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pp. 1–4, 2013, https://doi.org/10.1109/ECTICon.2013.6559479. DOI: https://doi.org/10.1109/ECTICon.2013.6559479
B. Wu, S. Keyue, S. Sigmond, “A new 3X interleaved bidirectional switched capacitor converter”, in 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, pp. 1433–1439, 2014, https://doi.org/10.1109/APEC.2014.6803495. DOI: https://doi.org/10.1109/APEC.2014.6803495
S. Xiong, S.-C. Tan, “Family of cascaded high-voltage-gain bidirectional switched-capacitor DC-DC converters”, in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 6648–6654, 2015, https://doi.org/10.1109/ECCE.2015.7310590. DOI: https://doi.org/10.1109/ECCE.2015.7310590
A. Priyadarshi, P. K. Kar, S. B. Karanki, “An inductor-less bidirectional DC-DC converter topology for high voltage gain applications”, in TENCON 2017 - 2017 IEEE Region 10 Conference, pp. 303–308, 2017, https://doi.org/10.1109/TENCON.2017.8227880. DOI: https://doi.org/10.1109/TENCON.2017.8227880
S. Xiong, S.-C. Tan, “Cascaded High-Voltage-Gain Bidirectional Switched-Capacitor DC–DC Converters for Distributed Energy Resources Applications”, IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1220–1231, 2017, https://doi.org/10.1109/TPEL.2016.2552380. DOI: https://doi.org/10.1109/TPEL.2016.2552380
V. Subburaj, D. Jena, “Sub-period interleaved Fibonacci switched capacitor converter”, in 2016 IEEE Region 10 Conference (TENCON), pp. 2892–2895, 2016, https://doi.org/10.1109/TENCON.2016.7848573. DOI: https://doi.org/10.1109/TENCON.2016.7848573
S. Li, S. Liang, Z. Li, W. Xie, P. Jia, J. Yao, “A Bidirectional Resonant Two-switch Boosting Switched-capacitor Converter with Phase-shift Modulation”, in 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 56–60, 2020, https://doi.org/10.1109/APEC39645.2020.9124582. DOI: https://doi.org/10.1109/APEC39645.2020.9124582
Z. Ye, Y. Lei, R. C. N. Pilawa-Podgurski, “The Cascaded Resonant Converter: A Hybrid Switched-Capacitor Topology With High Power Density and Efficiency”, IEEE Transactions on Power Electronics, vol. 35, no. 5, pp. 4946–4958, 2020, https://doi.org/10.1109/TPEL.2019.2947218. DOI: https://doi.org/10.1109/TPEL.2019.2947218
S. M. Fardahar, M. Sabahi, “New Expandable SwitchedCapacitor/Switched-Inductor High-Voltage Conversion Ratio Bidirectional DC–DC Converter”, IEEE Transactions on Power Electronics, vol. 35, no. 3, pp. 2480–2487, 2020, https://doi.org/10.1109/TPEL.2019.2932325. DOI: https://doi.org/10.1109/TPEL.2019.2932325
H. Moradisizkoohi, N. Elsayad, O. A. Mohammed, “A VoltageQuadrupler Interleaved Bidirectional DC–DC Converter With Intrinsic Equal Current Sharing Characteristic for Electric Vehicles”, IEEE Transactions on Industrial Electronics, vol. 68, no. 2, pp. 1803–1813, 2021, https://doi.org/10.1109/TIE.2020.2998757. DOI: https://doi.org/10.1109/TIE.2020.2998757
R. Hu, J. Zeng, J. Liu, K. W. E. Cheng, “A Nonisolated Bidirectional DC–DC Converter With High Voltage Conversion Ratio Based on Coupled Inductor and Switched Capacitor”, IEEE Transactions on Industrial Electronics, vol. 68, no. 2, pp. 1155–1165, 2021, https://doi.org/10.1109/TIE.2020.2967667. DOI: https://doi.org/10.1109/TIE.2020.2967667
S. Han, Y. Wang, Z. Xie, Y. Guan, J. M. Alonso, D. Xu, “Continuously Adjustable Modular Bidirectional Switched-Capacitor DC–DC Converter”, IEEE Transactions on Power Electronics, vol. 37, no. 11, pp. 12944–12948, 2022, https://doi.org/10.1109/TPEL.2022.3181495. DOI: https://doi.org/10.1109/TPEL.2022.3181495
A. Kumar, X. Xiong, X. Pan, M. Reza, A. R. Beig, K. A. Jaafari, “A Wide Voltage Gain Bidirectional DC–DC Converter Based on Quasi Z-Source and Switched Capacitor Network”, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp. 1353–1357, 2021, https://doi.org/10.1109/TCSII.2020.3033048. DOI: https://doi.org/10.1109/TCSII.2020.3033048
V. Meleshin, D. Zhiklenkov, A. Ganshin, “Efficient three-level boost converter for various applications”, 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), vol. 1, no. 1, pp. 91–92, 2012, https://doi.org/10.1109/EPEPEMC.2012.6397249. DOI: https://doi.org/10.1109/EPEPEMC.2012.6397249
J. M. de Andrade, G. V. Silva, R. F. Coelho, T. B. Lazzarin, “Inversor Boost a Capacitor Chaveado Conectado a Rede Elétrica”, Eletrônica de Potência, vol. 23, no. 4, pp. 466–476, 2018, https://doi.org/10.18618/REP.2018.4.0005. DOI: https://doi.org/10.18618/REP.2018.4.0005
M. Evzelman, S. Ben-Yaakov, “Average-Current-Based Conduction Losses Model of Switched Capacitor Converters”, IEEE Transactions on Power Electronics, vol. 28, no. 7, pp. 3341–3352, 2013, https://doi.org/10.1109/TPEL.2012.2226060. DOI: https://doi.org/10.1109/TPEL.2012.2226060
B. Wu, S. Li, K. M. Smedley, S. Singer, “Analysis of High-Power Switched-Capacitor Converter Regulation Based on Charge-Balance Transient-Calculation Method”, IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3482–3494, 2016, https://doi.org/10.1109/TPEL.2015.2466095 DOI: https://doi.org/10.1109/TPEL.2015.2466095
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Wellington Arthur Licht Nachau, Diogo Ribeiro Vargas, Gustavo Guilherme Koch, Antonio Manuel Santos Spencer Andrade
This work is licensed under a Creative Commons Attribution 4.0 International License.