An Analysis of the Limitations of Power Smoothing Metrics and Future Perspectives for Their Evolution in the Context of BESS-Based Systems
DOI:
https://doi.org/10.18618/REP.2005.2.017021Keywords:
Battery energy storage system, power fluctuation, power smoothing, ramp rateAbstract
The growing presence of power ramps, typically caused by the intermittency of renewable energy sources (RESs), may ultimately threaten the stability and reliability of the power grid. In the context of power smoothing algorithms such as Moving Average, Ramp Rate and First-Order Low-Pass Filter have been widely used in reference generation for Energy Storage Systems (ESSs). In this scenario, this paper analyzes typical metrics used for evaluating power smoothing techniques and comments on their limitations. Validation of this analysis is conducted using PV generation data sourced from the National Renewable Energy Laboratory (NREL). The results highlight the need to develop new metrics for a fairier comparison. Finally, this work also sets a concrete path for the evolution of said metrics.
Downloads
References
IPCC, “Summary for Policymakers”, in Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)], pp. 1–34, Geneva, Switzerland, 2023, doi:https://doi.org/10.59327/IPCC/AR6-9789291691647.001. DOI: https://doi.org/10.59327/IPCC/AR6-9789291691647.001
A. P. Asensio, M. Garc´ıa Plaza, J. Lopez Merino, F. R. Martinez Mendoza, M. Marek Niegowski, P. L. Camunas Garc ˜ ´ıa, “Numerical Analysis of Renewable Generation Variability for Energy Storage Smoothing Applications”, in 2021 22nd IEEE International Conference on Industrial Technology (ICIT), vol. 1, pp. 446–451, 2021, doi:https://doi.org/10.1109/ICIT46573.2021.9453635. DOI: https://doi.org/10.1109/ICIT46573.2021.9453635
Y. G. Landera, O. C. Zevallos, R. C. Neto, J. F. d. C. Castro, F. A. S. Neves, “A Review of Grid Connection Requirements for Photovoltaic Power Plants”, Energies, vol. 16, no. 5, 2023, doi:https://doi.org/10.3390/en16052093. DOI: https://doi.org/10.3390/en16052093
Q. Zheng, J. Li, X. Ai, J. Wen, J. Fang, “Overivew of grid codes for photovoltaic integration”, in 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 1–6, 2017, doi:https://doi.org/10.1109/EI2.2017.8245501. DOI: https://doi.org/10.1109/EI2.2017.8245501
Standardization Administration of the People’s Republic of China, “GB/T 19964-2012 Technical requirements for connecting photovoltaic power station to power system”, , 2012.
State Grid Corporation of China, “Q-GDW 617-2011. Technical requirements for connecting photovoltaic power station to power system”, , 2011.
German VDN e.V. beim VDEW, “Transmission Code 2007: Network and System Rules of the German Transmission System Operators”, 2007.
European Network of Transmission System Operators for Electricity, “Implementation Guideline for Network Code - Requirements for Grid Connection Applicable to all Generators”, , 2013.
B.-I. Craciun, T. Kerekes, D. Sera, R. Teodorescu, “Overview of recent Grid Codes for PV power integration”, in 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), pp. 959–965, 2012, doi:https://doi.org/10.1109/OPTIM.2012.6231767. DOI: https://doi.org/10.1109/OPTIM.2012.6231767
D. Lamsal, V. Sreeram, Y. Mishra, D. Kumar, “Output power smoothing control approaches for wind and photovoltaic generation systems: A review”, Renewable and Sustainable Energy Reviews, vol. 113, p. 109245, 2019, doi:https://doi.org/10.1016/j.rser.2019.109245. DOI: https://doi.org/10.1016/j.rser.2019.109245
P. Barra, W. de Carvalho, T. Menezes, R. Fernandes, D. Coury, “A review on wind power smoothing using high-power energy storage systems”, Renewable and Sustainable Energy Reviews, vol. 137, p. 110455, 2021, doi:https://doi.org/10.1016/j.rser.2020.110455. DOI: https://doi.org/10.1016/j.rser.2020.110455
M. Raoofat, M. Saad, S. Lefebvre, D. Asber, H. Mehrjedri, L. Lenoir, “Wind power smoothing using demand response of electric vehicles”, International Journal of Electrical Power Energy Systems, vol. 99, pp. 164–174, 2018, doi:https://doi.org/10.1016/j.ijepes.2017.12.017. DOI: https://doi.org/10.1016/j.ijepes.2017.12.017
S. Sukumar, M. Marsadek, K. Agileswari, H. Mokhlis, “Ramprate control smoothing methods to control output power fluctuations from solar photovoltaic (PV) sources—A review”, Journal of Energy Storage, vol. 20, pp. 218–229, 2018, doi:https://doi.org/10.1016/j.est.2018.09.013. DOI: https://doi.org/10.1016/j.est.2018.09.013
R. M. de Souza, F. J. P. Ferreira, A. S. Neto, R. C. Neto, F. A. S. Neves, J. F. C. Castro, “A Comparative Analysis of Power Smoothing Metrics: Unveiling Limitations Through Observational Data”, in 2023 IEEE 8th Southern Power Electronics Conference and 17th Brazilian Power Electronics Conference (SPEC/COBEP), pp. 1–7, 2023, doi:https://doi.org/10.1109/SPEC56436.2023.10407252. DOI: https://doi.org/10.1109/SPEC56436.2023.10407252
L. Ran, J. Bumby, P. Tavner, “Use of turbine inertia for power smoothing of wind turbines with a DFIG”, in 2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No.04EX951), pp. 106–111, 2004, doi:https://doi.org/10.1109/ICHQP.2004.1409337. DOI: https://doi.org/10.1109/ICHQP.2004.1409337
T. Senjyu, R. Sakamoto, N. Urasaki, T. Funabashi, H. Fujita, H. Sekine, “Output power leveling of wind turbine Generator for all operating regions by pitch angle control”, IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 467–475, 2006, doi:https://doi.org/10.1109/TEC.2006.874253. DOI: https://doi.org/10.1109/TEC.2006.874253
A. Uehara, A. Pratap, T. Goya, T. Senjyu, A. Yona, N. Urasaki, T. Funabashi, “A Coordinated Control Method to Smooth Wind Power Fluctuations of a PMSG-Based WECS”, IEEE Transactions on Energy Conversion, vol. 26, no. 2, pp. 550–558, 2011, doi:https://doi.org/10.1109/TEC.2011.2107912. DOI: https://doi.org/10.1109/TEC.2011.2107912
Integration of an Energy Storage System into Wind Farm, pp. 137–162, Springer London, London, 2009, doi:https://doi.org/10.1007/978-1-84800-316-3 5. DOI: https://doi.org/10.1007/978-1-84800-316-3
R. Kini, D. Raker, T. Stuart, R. Ellingson, M. Heben, R. Khanna, “Mitigation of PV Variability Using Adaptive Moving Average Control”, IEEE Transactions on Sustainable Energy, vol. 11, no. 4, pp. 2252–2262, 2020, doi:https://doi.org/10.1109/TSTE.2019.2953643. DOI: https://doi.org/10.1109/TSTE.2019.2953643
A. Puri, “Optimally smoothing output of PV farms”, in 2014 IEEE PES General Meeting — Conference Exposition, pp. 1–5, 2014, doi:https://doi.org/10.1109/PESGM.2014.6939029. DOI: https://doi.org/10.1109/PESGM.2014.6939029
G. D’Amico, F. Petroni, S. Vergine, “Ramp Rate Limitation of Wind Power: An Overview”, Energies, vol. 15, no. 16, 2022, doi:https://doi.org/10.3390/en15165850. DOI: https://doi.org/10.3390/en15165850
T. E. Hoff, R. Perez, “Quantifying PV power Output Variability”, Solar Energy, vol. 84, no. 10, pp. 1782–1793, 2010, doi:https://doi.org/10.1016/j.solener.2010.07.003. DOI: https://doi.org/10.1016/j.solener.2010.07.003
H. Moaveni, D. K. Click, R. H. Meeker, R. M. Reedy, A. Pappalardo, “Quantifying solar power variability for a large central PV plant and small distributed PV plant”, in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), pp. 0969–0972, 2013, doi:https://doi.org/10.1109/PVSC.2013.6744303. DOI: https://doi.org/10.1109/PVSC.2013.6744303
A. D. Mills, R. H. Wiser, “Implications of geographic diversity for short-term variability and predictability of solar power”, in 2011 IEEE Power and Energy Society General Meeting, pp. 1–9, 2011, doi:https://doi.org/10.1109/PES.2011.6039888. DOI: https://doi.org/10.1109/PES.2011.6039888
M. Mitchell, M. Campbell, K. Klement, M. Sedighy, “Power variability analysis of megawatt-scale solar photovoltaic installations”, in 2016 IEEE Electrical Power and Energy Conference (EPEC), pp. 1–4, 2016, doi:https://doi.org/10.1109/EPEC.2016.7771687. DOI: https://doi.org/10.1109/EPEC.2016.7771687
A. L. Pinheiro, F. O. Ramos, M. M. B. Neto, R. N. Lima, L. G. S. Bezerra, A. Washington, “A Review and Comparison of Smoothing Methods for Solar Photovoltaic Power Fluctuation Using Battery Energy Storage Systems”, in 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), pp. 1–5, 2021, doi:https://doi.org/10.1109/ISGTLatinAmerica52371.2021.9543078. DOI: https://doi.org/10.1109/ISGTLatinAmerica52371.2021.9543078
A. Atif, M. Khalid, “Saviztky–Golay Filtering for Solar Power Smoothing and Ramp Rate Reduction Based on Controlled Battery Energy Storage”, IEEE Access, vol. 8, pp. 33806–33817, 2020, doi:https://doi.org/10.1109/ACCESS.2020.2973036. DOI: https://doi.org/10.1109/ACCESS.2020.2973036
S. Koohi-Kamali, N. Rahim, H. Mokhlis, “Smart power management algorithm in microgrid consisting of photovoltaic, diesel, and battery storage plants considering variations in sunlight, temperature, and load”, Energy Conversion and Management, vol. 84, pp. 562–582, 2014, doi:https://doi.org/10.1016/j.enconman.2014.04.072. DOI: https://doi.org/10.1016/j.enconman.2014.04.072
P. L. T. da Silva, P. A. C. Rosas, J. F. C. Castro, D. d. C. Marques, R. R. B. Aquino, G. F. Rissi, R. C. Neto, D. C. P. Barbosa, “Power Smoothing Strategy for Wind Generation Based on Fuzzy Control Strategy with Battery Energy Storage System”, Energies, vol. 16, no. 16, 2023, doi:https://doi.org/10.3390/en16166017. DOI: https://doi.org/10.3390/en16166017
S. V. Raygani, R. Sharma, T. K. Saha, “Variability and performance analysis of the PV plant at The University of Queensland”, in 2013 Australasian Universities Power Engineering Conference (AUPEC), pp. 1–6, 2013, doi:https://doi.org/10.1109/AUPEC.2013.6725342. DOI: https://doi.org/10.1109/AUPEC.2013.6725342
B. Marion, A. Anderberg, C. Deline, M. Muller, G. Perrin, J. Rodriguez, S. Rummel, T. Silverman, F. Vignola, S. Barkaszi, “Data for Validating Models for PV Module Performance”, , 8 2021, doi:https://doi.org/10.21948/1811521.
B. Marion, M. G. Deceglie, T. J. Silverman, “Analysis of measured photovoltaic module performance for Florida, Oregon, and Colorado locations”, Solar Energy, vol. 110, pp. 736–744, 2014, doi:https://doi.org/10.1016/j.solener.2014.10.017. DOI: https://doi.org/10.1016/j.solener.2014.10.017
H. Holttinen, “Impact of hourly wind power variations on the system operation in the Nordic countries”, Wind Energy, vol. 8, no. 2, pp. 197–218, 2005, doi:https://doi.org/10.1002/we.143. DOI: https://doi.org/10.1002/we.143
M. Anvari, G. Lohmann, M. Wachter, P. Milan, E. Lorenz, D. Heinemann, M. R. R. Tabar, J. Peinke, “Short term fluctuations of wind and solar power systems”, New Journal of Physics, vol. 18, no. 6, p. 063027, jun 2016, doi:https://doi.org/10.1088/1367-2630/18/6/063027. DOI: https://doi.org/10.1088/1367-2630/18/6/063027
B. M. Mazumdar, M. Saquib, A. K. Das, “An empirical model for ramp analysis of utility-scale solar PV power”, Solar Energy, vol. 107, pp. 44–49, 2014, doi:https://doi.org/10.1016/j.solener.2014.05.027. DOI: https://doi.org/10.1016/j.solener.2014.05.027
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ricardo M. de Souza, Felipe J. P. Ferreira, Antonio S. Neto, Rafael C. Neto, Francisco A. S. Neves, José F. C. Castro
This work is licensed under a Creative Commons Attribution 4.0 International License.