Assessment of voltage detection-based Selective Harmonic Current Compensation Strategies for Different Non-linear Load Signatures
DOI:
https://doi.org/10.18618/REP.2005.2.053060Keywords:
Harmonic current compensation, non-linear load signatures, low selective output impedance, voltage detection-based strategy, voltage distortionAbstract
This paper compares the performance of voltage detection-based selective harmonic current compensation (VDB-HCC) strategies to improve grid power quality under different non-linear load (NLL) signatures. The harmonic current compensation content of current-source and voltage-source NLLs are investigated through three VDB-HCC strategies: VDB-HCC based on a single current loop (SCL); VDB-HCC based on dual parallel current control loops (DCL); and VDB-HCC based on parallel voltage and current control loops (VCL). Analytical models and frequency response analysis are derived to corroborate the findings of this paper. Simulation results show that the VCL strategy performs better harmonic compensation compared to the SCL and DCL strategies, under penetration of both current-source and voltage-source NLLs and weak grid conditions. Experimental results using a 1.5-kW commercial distributed energy resource (DER) are also conducted. The outcomes of this paper support the decision-making of industrial consumers and distribution system operators to pursue harmonic distortion levels within acceptable limits.
Downloads
References
J. Gherard, W. C. S. Amorim, A. F. Cupertino, H. A. Pereira, S. I. Seleme, R. Teodorescu, “Optimum Design of MMC-based ES-STATCOM Systems: The Role of the Submodule Reference Voltage”, IEEE Trans on Ind Appl, vol. 57, no. 3, pp. 3064–3076, May–Jun. 2021, doi: https://doi.org/10.1109/TIA.2020.3032381. DOI: https://doi.org/10.1109/TIA.2020.3032381
L. S. Xavier, W. C. S. Amorim, A. F. Cupertino, H. A. Pereira, S. I. Seleme, R. Teodorescu, “Power converters for battery energy storage systems connected to medium voltage systems: a comprehensive review”, BMC Energy, vol. 1, no. 7, Jul. 2019, doi: https://doi.org/10.1186/s42500-019-0006-5. DOI: https://doi.org/10.1186/s42500-019-0006-5
M. Farihan, T. .Jiashen, L. Ching-Ming, C. Liang-Rui, “Development of Energy Storage Systems for Power Network Reliability: A Review”, Energies, vol. 11, no. 9, Aug. 2018, doi: https://doi.org/10.3390/en11092278. DOI: https://doi.org/10.3390/en11092278
G. Wang, G. Konstantinou, C. D. Townsend, J. Pou, S. Vazquez, G. D. Demetriades, V. G. Agelidis, “A Review of Power Electronics for Grid Connection of Utility-Scale Battery Energy Storage Systems”, IEEE Trans on Sustain Energy, vol. 7, no. 4, pp. 1778–1790, Oct. 2016, doi: https://doi.org/10.1109/TSTE.2016.2586941. DOI: https://doi.org/10.1109/TSTE.2016.2586941
D. Linden, T. Reddy, Handbook of Batteries, vol. 3, McGraw-Hill Professional, New York, 2001.
Aoxia Chen, P. K. Sen, “Advancement in battery technology: A state-of-the-art review”, in IEEE Industry Applications Society Annual Meeting, pp. 1–10, 2016, doi: https://doi.org/10.1109/IAS.2016.7731812. DOI: https://doi.org/10.1109/IAS.2016.7731812
R. H. Byrne, T. A. Nguyen, D. A. Copp, B. R. Chalamala, I. Gyuk, “Energy Management and Optimization Methods for Grid Energy Storage Systems”, IEEE Access, vol. 6, pp. 13231–13260, Aug. 2018, doi: https://doi.org/10.1109/ACCESS.2017.2741578. DOI: https://doi.org/10.1109/ACCESS.2017.2741578
R. C. Bansal, “Optimization Methods for Electric Power Systems: An Overview”, International J of Emerging Electric Power Systems, vol. 2, no. 1, Mar. 2005, doi: https://doi.org/10.2202/1553-779X.1021. DOI: https://doi.org/10.2202/1553-779X.1021
H. Fathima, K. Palanisamy, “Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System”, Hindawi, vol. 2015, no. 713530, pp. 1–16, Dec. 2015, doi: https://doi.org/10.1155/2015/713530. DOI: https://doi.org/10.1155/2015/713530
N. Hashemipour, J. Aghaei, M. Lotfi, T. Niknam, M. Askarpour, M. Shafie-khah, J. P. S. Catal ̃ao, “Multi-objective optimisation method for coordinating battery storage systems, photovoltaic inverters and tap changers”, IET Renewable Power Generation, vol. 14, no. 3, pp. 475–483, Jan. 2020, doi: https://doi.org/10.1049/iet-rpg.2019.0644. DOI: https://doi.org/10.1049/iet-rpg.2019.0644
A. Panday, H. O. Bansal, “Multi-Objective Optimization in Battery Selection for Hybrid Electric Vehicle Applications”, J Electrical Systems, vol. 12, no. 2, pp. 325–343, 2016.
J. E. Leal, “AHP-express: A simplified version of the analytical hierarchy process method”, MethodsX, vol. 7, p. 100748, Set. 2020, doi: https://doi.org/10.1016/j.mex.2019.11.021. DOI: https://doi.org/10.1016/j.mex.2019.11.021
M. Ashby, D. Cebon, “Materials selection in mechanical design”, Letter J Physics, vol. 3, pp. 1–9, Nov. 1993, doi: https://doi.org/10.1051/jp4:1993701. DOI: https://doi.org/10.1051/jp4:1993701
K. Yoon, C. L. Hwang, Multiple Attribute Decision Making: Methods and Applications, A State of the Art Survey, Springer Verlag, Berlin, 1981.
K. Yoon, System selection by multiple attribute decision making, Ph.D. thesis, Kansas State University, 1980.
A. F. Cupertino, W. C. S. Amorim, H. A. Pereira, S. I. Seleme Junior, S. K. Chaudhary, R. Teodorescu, “High Performance Simulation Models for ES-STATCOM Based on Modular Multilevel Converters”, IEEE Trans on Energy Conversion, vol. 35, no. 1, pp. 474–483, Mar. 2020, doi: https://doi.org/10.1109/TEC.2020.2967314. DOI: https://doi.org/10.1109/TEC.2020.2967314
G. Feix, S. Dieckerhoff, J. Allmeling, J. Schonberger, “Simple methods to calculate IGBT and diode conduction and switching losses”, in 13th EPE, pp. 1–8, 2009.
A. Sangwongwanich, Y. Yang, D. Sera, F. Blaabjerg, “Lifetime Evaluation of Grid-Connected PV Inverters Considering Panel Degradation Rates and Installation Sites”, IEEE Trans on Power Electron, vol. 33, no. 2, pp. 1225–1236, Feb. 2018, doi: https://doi.org/10.1109/TPEL.2017.2678169. DOI: https://doi.org/10.1109/TPEL.2017.2678169
P. D. Reigosa, H. Wang, Y. Yang, F. Blaabjerg, “Prediction of Bond Wire Fatigue of IGBTs in a PV Inverter Under a Long-Term Operation”, IEEE Trans on Power Electron, vol. 31, no. 10, pp. 7171–7182, Feb. 2016, doi: https://doi.org/10.1109/APEC.2015.7104787. DOI: https://doi.org/10.1109/APEC.2015.7104787
D. Stroe, M. ́Swierczy ́nski, A. Stan, R. Teodorescu, S. J. Andreasen, “Accelerated Lifetime Testing Methodology for Lifetime Estimation of Lithium-Ion Batteries Used in Augmented Wind Power Plants”, IEEE Trans on Ind Appl, vol. 50, no. 6, pp. 4006–4017, Nov.–Dec. 2014, doi: https://doi.org/10.1109/TIA.2014.2321028. DOI: https://doi.org/10.1109/TIA.2014.2321028
D. Stroe, Lifetime Models for Lithium-ion Batteries used in Virtual Power Plant Applications, Ph.D. thesis, Aalborg University, 2014.
J. Schiffer, D. U. Sauer, H. Bindner, T. Cronin, P. Lundsager, R. Kaiser, “Model prediction for ranking lead-acid batteries according to expected lifetime in renewable energy systems and autonomous power- supply systems”, Journal of Power Sources, vol. 168, no. 1, pp. 66–78, DOI: https://doi.org/10.1016/j.jpowsour.2006.11.092
May 2007, doi: https://doi.org/10.1016/j.jpowsour.2006.11.092. DOI: https://doi.org/10.1016/j.jpowsour.2006.11.092
R. Z. Farahani, M. SteadieSeifi, N. Asgari, “Multiple criteria facility location problems: A survey”, Applied Mathematical Modelling, vol. 34, no. 7, pp. 1689–1709, Jul. 2010, doi: https://doi.org/10.1016/j.apm.2009.10.005. DOI: https://doi.org/10.1016/j.apm.2009.10.005
C.-L. Hwang, K. Yoon, Methods for Multiple Attribute Decision Making, pp. 58–191, Springer Berlin Heidelberg, Berlin, Heidelberg, 1981, doi: https://doi.org/10.1007/978-3-642-48318-9 3. DOI: https://doi.org/10.1007/978-3-642-48318-9_3
J. Chai, J. N. Liu, E. W. Ngai, “Application of decision-making techniques in supplier selection: A systematic review of literature”, Expert Systems with Appl, vol. 40, no. 10, pp. 3872–3885, Aug. 2013, doi: https://doi.org/10.1016/j.eswa.2012.12.040. DOI: https://doi.org/10.1016/j.eswa.2012.12.040
Agˆencia Nacional de Energia El ́etrica (ANEEL), 2022, URL: https://www.gov.br/aneel/pt-br.
WEG, ESSW – Sistema de Armazenamento de Energia em Baterias, Mar. 2021, URL: https://www.weg.net.
Power Tech, Power Tech – Advanced Energy Storage Systems, Mar. 2021, URL: https://www.powertechsystems.eu/home/products/12v-lithium-battery-pack-powerbrick/.
Chargex, Chargex – Lithium Ion Batteries, Mar. 2021, URL: https://www.lithiumion-batteries.com/products/12-volt-lithium-batteries/.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 João Marcus Soares Callegari, Rodrigo Rodrigues Bastos, Allan Fagner Cupertino, Danilo Iglesias Brandao, Heverton Augusto Pereira
This work is licensed under a Creative Commons Attribution 4.0 International License.