Controle de Velocidade de uma Máquina de Ímãs Permanentes Tolerante a Falhas em Conjunto com Técnica de Máximo Torque por Ampere
DOI:
https://doi.org/10.18618/REP.e202434Keywords:
Veículos elétricos, Controle tolerante, PMSM, Máximo torque por Ampere, Processor in the loopAbstract
Com o grande avanço da utilização de veículos elétricos no mundo, devido ao alto nível de concorrência e com a busca da diminuição dos impactos ambientais que os veículos à combustíveis fósseis trazem, existe um crescimento na tentativa de aumentar a confiabilidade e robustez destes veículos. Desta forma, este trabalho traz como objetivo propor um algoritmo de controle para máquinas síncronas de ímãs permanentes PMSM que sejam tolerantes a falhas de circuito ou de interruptor aberto com algoritmo de máximo torque por Ampére, utilizando-se de um inversor trifásico de dois níveis para controle e acionamento da máquina. Em função de prever de forma eficiente o comportamento do sistema de controle minimizando os riscos associados aos testes em alta tensão e com a máquina em falha, é utilizada da técnica de simulação do tipo processor in the loop para validar o código diretamente no processador escolhido. Neste trabalho, é explicado o funcionamento do motor IPM e desenvolvido os modelos de torque para operação em falha. Por fim, são feitas simulações do tipo PIL para validar a análise teórica.
Downloads
References
IEA, “Global EV data Explorer”, https://www.iea.org/data-and-statistics/data-tools/global-ev-data-explorer, accesado em: 26 de maio de 2024., 2023.
E. Sperling, S. Rambo, “Reliabilty Becames The Top Concern In Automotive”, https://semiengineering.com/reliability-becomes-the-top-concern-in-automotive/, accessado em: 26 de maio de 2024, 2019.
Q. Huang, Q. Huang, H. Guo, J. Cao, “Design and research of permanent magnet synchronous motor controller for electric vehicle”, Energy Science & Engineering, vol. 11, no. 1, pp. 112–126, 2023, DOI: https://doi.org/10.1002/ese3.1316
X. Wang, Z. Wang, M. Gu, B. Wang, W. Wang, M. Cheng, “Current Optimization-Based Fault-Tolerant Control of Standard Three-Phase PMSM Drives”, IEEE Transactions on Energy Conversion, vol. 36, no. 2, pp. 1023–1035, 2021. DOI: https://doi.org/10.1109/TEC.2020.3036041
B. Cai, Y. Zhao, H. Liu, M. Xie, “A Data-Driven Fault Diagnosis Methodology in Three-Phase Inverters for PMSM Drive Systems”, IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5590–5600, 2017. DOI: https://doi.org/10.1109/TPEL.2016.2608842
Y. Song, B. Wang, “Survey on Reliability of Power Electronic Systems”, IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 591–604, 2013. DOI: https://doi.org/10.1109/TPEL.2012.2192503
H. Hamza, J. Song-Manguelle, P. M. Lingom, J. Nyobe-Yome, M. L. Doumbia, “A Review of Fault-Tolerant Control Methods for Cascaded H-Bridge Multilevel Inverters”, in 2023 IEEE 14th International Conference on Power Electronics and Drive Systems (PEDS), pp. 1–7, 2023. DOI: https://doi.org/10.1109/PEDS57185.2023.10246759
K. D. Hoang, Z. Q. Zhu, M. P. Foster, D. A. Stone, “Comparative study of current vector control performance of alternate fault tolerant inverter topologies for three-phase PM brushless ac machine with one phase open - circuit fault”, in 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010), pp. 1–6, 2010. DOI: https://doi.org/10.1049/cp.2010.0052
P. Lezana, G. Ortiz, “Extended Operation of Cascade Multi-cell Converters Under Fault Condition”, IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2697–2703, 2009. DOI: https://doi.org/10.1109/TIE.2009.2019771
J. Andreu, I. Kortabarria, E. Ibarra, I. M. de Alegr´ıa, E. Robles, “A new hardware solution for a fault tolerant matrix converter”, in 2009 35th Annual Conference of IEEE Industrial Electronics, pp. 4469–4474, 2009. DOI: https://doi.org/10.1109/IECON.2009.5414858
Y. Song, B. Wang, “A hybrid electric vehicle powertrain with fault- 9tolerant capability”, in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 951–956, 2012. DOI: https://doi.org/10.1109/APEC.2012.6165933
A. L. Julian, G. Oriti, “A Comparison of Redundant Inverter Topologies to Improve Voltage Source Inverter Reliability”, in Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, vol. 4, pp. 1674–1678, 2006. DOI: https://doi.org/10.1109/IAS.2006.256761
S. Ceballos, J. Pou, J. Zaragoza, J. L. Martin, E. Robles, I. Gabiola, “Efficient Modulation Technique for a Four-Leg Fault-Tolerant Neutral-Point-Clamped Inverter”, in IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, pp. 2090–2095, 2006. DOI: https://doi.org/10.1109/IECON.2006.348023
A. Kontarˇcek, P. Bajec, M. Nemec, V. Ambroˇziˇc, D. Nedeljkovic, “Cost-Effective Three-Phase PMSM Drive Tolerant to Open-Phase Fault”, IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 6708–6718, 2015. DOI: https://doi.org/10.1109/TIE.2015.2437357
R. C. Dorf, R. H. BISHOP, Modern Control Systems, Pearson Prentice Hall, 2005.
S. Buso, P. Mattavelli, Digital Control in Power Electronics, Springer, 2015. DOI: https://doi.org/10.1007/978-3-031-02499-3
S. Bolognani, R. Petrella, A. Prearo, L. Sgarbossa, “Automatic tracking of MTPA trajectory in IPM motor drives based on AC current injection”, in 2009 IEEE Energy Conversion Congress and Exposition, pp. 2340–2346, 2009. DOI: https://doi.org/10.1109/ECCE.2009.5316066
B. Bose, Modern Power Electronics and AC Drives, Prentice Hall PTR, Upper Saddle River, N.J., 2002.
J. Mina, Z. Flores, E. L´opez, A. P´erez, J.-H. Calleja, “Processor-in-the- loop and hardware-in-the-loop simulation of electric systems based in FPGA”, in 2016 13th International Conference on Power Electronics (CIEP), pp. 172–177, 2016. DOI: https://doi.org/10.1109/CIEP.2016.7530751
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 João Batista Viana Neto, Victor Hugo Kittel Ries, Gierri Waltrich
This work is licensed under a Creative Commons Attribution 4.0 International License.