Unified Platform for Automated Tests of Inverter-Based Resources with Harware-in-the-loop
DOI:
https://doi.org/10.18618/REP.e202443Keywords:
CHIL, Inverter-based Resources, Hardware-in-the-loop, Photovoltaic Inverter, Test automation, Test PlatformAbstract
Testing of inverter-based resources (IBRs) faces challenges in establishing standardized procedures across all product development stages. Most of the testing approaches use Hardware-in-the-Loop (HIL) during the early stages independently from the final product testing, which can lead to discrepant results. To solve these issues, this paper proposes a unified platform for automatically testing IBRs. It can be used during all product development stages, from pure simulation to Controller Hardware-in-the-Loop (CHIL) and finally on the complete commercial product, ensuring uniform test procedures with different test setups. A case study describing compliance tests of grid-connection codes of photovoltaic (PV) inverters are presented to demonstrate the proposed approach. Experimental tests were performed in accordance to Brazilian grid-connection codes in an ISO/IEC 17025 accredited laboratory. The results obtained with the proposed platform in CHIL and full-hardware showed high similarity with the ones obtained with the accredited laboratory, validating the proposed approach. In addition, the platform can be used to perform tests not specified in standards and to verify the performance of IBRs in operating conditions that are often difficult to be tested in laboratory. Ensuring consistent test procedures, the platform facilitates comparable results along all the testing stages, reducing the product development cycle.
Downloads
References
M. De Stefano, H. Mishra, A. M. Giordano, R. Lampariello, C. Ott, “A Relative Dynamics Formulation for Hardware- in-the-Loop Simulation of On-Orbit Robotic Missions”, IEEE Robotics and Automation Letters, vol. PP, pp. 1–1, 03 2021.
A. Peiret, F. Gonz´alez, J. Kovecses, M. Teichmann, A. Enzenhoefer, “Model-Based Coupling for Co-Simulation of Robotic Contact Tasks”, IEEE Robotics and Automation Letters, vol. PP, pp. 1–1, 07 2020.
X. Dai, C. Ke, Q. Quan, K.-Y. Cai, “RFlySim: Automatic test platform for UAV autopilot systems with FPGA-based hardware-in-the-loop simulations”, Aerospace Science and Technology, vol. 114, p. 106727, 04 , 2021. DOI: https://doi.org/10.1016/j.ast.2021.106727
R. Silva Rodrigues, A. Murilo, R. Lopes, L. Souza, “Hardware in the Loop Simulation for Model Predictive Control Applied to Satellite Attitude Control”, IEEE Access, vol. 7, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2949731
A. Dubey, A. Subramanian, “Hardware in the Loop Simulation and Control Design for Autonomous Free Running Ship Models”, Defence Science Journal, vol. 70, pp. 469–476, 07 2020. DOI: https://doi.org/10.14429/dsj.70.14926
N. Sharma, B. Jiang, A. Rodionov, Y. Liu, “A Mechanical-Hardware-in-the-Loop Test Bench for Verification of Multi-Motor Drivetrain Systems”, IEEE Transactions on Transportation Electrification, vol. PP, pp. 1–1, 01 , 2022. DOI: https://doi.org/10.1109/TTE.2022.3191411
N. Sharma, G. Mademlis, Y. Liu, J. Tang, “Evaluation of OperatingRange of a Machine Emulator for a Back-to-Back Power-Hardware-in-the-Loop Test Bench”, IEEE Transactions on Industrial Electronics, vol. 69, pp. 1–1, 10 2022. DOI: https://doi.org/10.1109/TIE.2022.3142421
Y. Zhou, J. Lin, Y. Song, Y. Cai, H. Liu, “A power hardware-in-loop based testing bed for auxiliary active power control of wind power plants”, Electric Power Systems Research, vol. 124, 07 2015. DOI: https://doi.org/10.1016/j.epsr.2015.02.018
G.-H. Kim, J.-Y. Kim, J.-H. Jeon, S.-K. Kim, E.-S. Kim, J.-H. Lee, M. Park, I. Yu, “Hardware-in-the-loop Simulation Method for a Wind Farm Controller Using Real Time Digital Simulator”, Journal of Electrical Engineering and Technology, vol. 9, pp. 1489–1494, 09, 2014. DOI: https://doi.org/10.5370/JEET.2014.9.5.1489
Z. Ahmad, J. Rueda, N. Kumar, E. Rakhshani, P. Palensky, M. Meijden, “A Power Hardware-in-the-Loop Based Method for FAPR Compliance Testing of the Wind Turbine Converters Control”, Energies, vol. 13, 10 2020. DOI: https://doi.org/10.3390/en13195203
A. Geni´c, C. Mayet, M. Almeida, A. Bouscayrol, N. Stojkov, “EMR-Based Signal-HIL Testing of an Electric Vehicle Control”, pp. 1–6, 12, 2017. DOI: https://doi.org/10.1109/VPPC.2017.8331047
K. Algarny, A. S. Abdelrahman, M. Youssef, “A novel platform for power train model of electric cars with experimental validation using real-time hardware in-the-loop (HIL): A case study of GM Chevrolet Volt 2nd generation”, in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 3510–3516, 2018. DOI: https://doi.org/10.1109/APEC.2018.8341610
X. Song, H. Cai, T. Jiang, T. Sennewald, J. Kircheis, S. Schlegel, L. Noris, Y. Benzetta, D. Westermann, “Research on Performance of Real-Time Simulation based on Inverter-Dominated Power Grid”, IEEE Access, 08 , 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3016177
J.-H. Jung, “Power hardware-in-the-loop simulation (PHILS) of photovoltaic power generation using real-time simulation techniques and power interfaces”, Journal of Power Sources, vol. 285, 07 2015. DOI: https://doi.org/10.1016/j.jpowsour.2015.03.052
J. Badar, S. Ali, H. M. Munir, V. Bhan, S. S. H. Bukhari, J.-S. Ro, “Reconfigurable Power Quality Analyzer Applied to Hardware-in-Loop Test Bench”, Energies, vol. 14, no. 16, 2021. DOI: https://doi.org/10.3390/en14165134
Z. Zhang, R. Sch¨urhuber, L. Fickert, K. Friedl, G. Chen, Y. Zhang, “Systematic stability analysis, evaluation and testing process, and platform for grid-connected power electronic equipment”, e & i Elektrotechnik und Informationstechnik, vol. 138, no. 1, pp. 20–30, 02, 2021. DOI: https://doi.org/10.1007/s00502-020-00857-y
L. Menegazzo, R. Bortolini, A. Severo, C. Freitas, L. Piton, F. Carnielutti, L. Bellinaso, L. Michels, “Development of a Platform for Automated Tests of Photovoltaic Inverters”, pp. 1–6, 11 2023. DOI: https://doi.org/10.1109/SPEC56436.2023.10408067
H. Magnago, H. Figueira, O. Gagrica, D. Majstorovic, “HIL-based certification for converter controllers: Advantages, challenges and outlooks (Invited Paper)”, pp. 1–6, 10 2021. DOI: https://doi.org/10.1109/Ee53374.2021.9628196
J. Montoya, R. Brandl, K. Vishwanath, J. Johnson, R. Darbali Zamora, A. Summers, J. Hashimoto, H. Kikusato, T. S. Ustun, N. Ninad, E. Apablaza-Arancibia, J.-P. B´erard, M. Rivard, S. Q.
Ali, A. Obushevs, K. Heussen, R. Stanev, E. Guillo-Sansano, M. H. Syed, G. Burt, C. Cho, H.-J. Yoo, C. P. Awasthi, K. Wadhwa, R. Br¨undlinger, “Advanced Laboratory Testing Methods Using Real-Time Simulation and Hardware-in-the-Loop Techniques: A Survey of Smart Grid International Research Facility Network Activities”, Energies, vol. 13, no. 12, 2020. DOI: https://doi.org/10.3390/en13123267
V. Samano-Ortega, H. M´endez-Guzm´an, J. Padilla-Medina, J. Aguilera-Alvarez, C. Martinez-Nolasco, J. Martinez, “Control Hardware in the Loop and IoT Integration: A Testbed for Residential Photovoltaic System Evaluation”, IEEE Access, vol. 10, pp. 1–1, 01, 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3188686
I. Jayawardana, C. Ho, Y. Zhang, “A Comprehensive Study and Validation of a Power-HIL Testbed for Evaluating Grid-Connected EV Chargers”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. PP, pp. 1–1, 06 2021.
Q. Cui, K. El-Arroudi, G. Joos, “Real-time Hardware-in-the-loop Simulation for Islanding Detection Schemes in Hybrid Distributed Special IssueGeneration Systems”, IET Generation, Transmission Distribution, vol. 11, 03 2017. DOI: https://doi.org/10.1049/iet-gtd.2016.1562
A. Hoke, A. Nelson, S. Chakraborty, F. Bell, M. McCarty, “An Islanding Detection Test Platform for Multi-Inverter Islands using Power HIL”, IEEE Transactions on Industrial Electronics, vol. PP, pp. 1–1, 02, 2018.
H. Bilil, A. Hathah, A. Battou, “Design and Experimentation Guidelines for DER’s Emulation Testbed”, IEEE Transactions on Power Systems, vol. PP, pp. 1–1, 09 2021.
F. Huerta, J. K. Gruber, M. Prodanovic, P. Matatagui, “Power-hardware-in-the-loop test beds: evaluation tools for grid integration of distributed energy resources”, IEEE Industry Applications Magazine, vol. 22, no. 2, pp. 18–26, 2016. DOI: https://doi.org/10.1109/MIAS.2015.2459091
J. Johnson, R. Ablinger, R. Br¨undlinger, B. Fox, J. Flicker, “Interconnection Standard Grid-Support Function Evaluations Using an Automated Hardware-in-the-Loop Testbed”, IEEE Journal of Photovoltaics, vol. PP, pp. 1–7, 02 2018.
R. Brundlinger, J. St¨ockl, Z. Miletic, R. Ablinger, F. Leimgruber, J. Johnson, J. Shi, “Pre-Certification of Grid Code Compliance for Solar Inverters with an Automated Controller-Hardware-in-the-Loop Test Environment”, , 10, 2018.
M. Arifujjaman, R. Salas, A. Johnson, J. Araiza, F. Elyasichamazkoti, A. Momeni, S. Chuangpishit, F. Katiraei, “Development, Demonstration, and Validation of Power Hardware-in-the-loop (PHIL) Testbed for DER Dynamics Integration in Southern California Edison (SCE)”, pp. 1–5, 04 2023. DOI: https://doi.org/10.1109/GridEdge54130.2023.10102716
H. Kikusato, T. S. Ustun, J. Hashimoto, K. Otani, T. Nagakura, Y. Yoshioka, R. Maeda, K. Mori, “Developing Power Hardware-in-the-Loop Based Testing Environment for Volt-Var and Frequency-Watt Functions of 500 kW Photovoltaic Smart Inverter”, IEEE Access, vol. 8, pp. 1–1, 12 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3044327
H. Kikusato, D. Orihara, J. Hashimoto, T. Takamatsu, T. Oozeki, T. Matsuura, S. Miyazaki, H. Hamada, T. Miyazaki, “Verification of power hardware-in-the-loop environment for testing grid-forming inverter”, Energy Reports, vol. 9, pp. 303–311, 05 2023. DOI: https://doi.org/10.1016/j.egyr.2022.12.126
IEEE, IEEE 1547: IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces, Institute of Electrical and Electronics Engineers, 2018.
IEEE, IEEE 2800-2022: IEEE Standard for Interconnection and Interoperability of Inverter-Based Resources (IBRs) Interconnecting with Associated Transmission Electric Power Systems, Institute of Electrical and Electronics Engineers, 2022.
EN, EN 50549-1-2: Requirements for generating plants to be connected in parallel with distribution networks, European Committee for Electrotechnical Standardization, 2019.
ABNT, ABNT NBR 16149: Photovoltaic systems - Characteristics of the connection interface with the distribution network - Test conditions and safety requirements, 2013.
ABNT, ABNT NBR 16150: Photovoltaic systems – Equipment-Inverters – Minimum performance, safety and testing requirements, 2014.
INMETRO, INMETRO Ordinance 140/2022., 2022.
H. Figueira, C. Rech, L. Schuch, H. Hey, L. Michels, “Automated test platform for grid-connected PV inverter certification”, pp. 1–6, 11, 2015. DOI: https://doi.org/10.1109/COBEP.2015.7420259
L. Wei, Y. Che, L. Ge, T. Wen, “Automatic test platform for photovoltaic grid-connected inverters”, pp. 1–4, 12 2013. DOI: https://doi.org/10.1109/PESA.2013.6828203
IEC, IEC61000-4-30: Testing and measurement techniques - Power quality me- asurement methods, International Electrotechnical Commission - IEC, 2015.
IEC, IEC61000-4-7: Testing and measurement techniques – General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto,International Electrotechnical Commission - IEC, 2009.
IEC, IEC61000-4-15: Testing and measurement techniques - Flickermeter – Functional and design specifications, International Electrotechnical Commission - IEC, 2010.
IEC, IEC TR 61000-1-7: Electromagnetic compatibility (EMC) - Part 1-7: General - Power factor in single-phase systems under non-sinusoidal conditions, International Electrotechnical Commission, 2016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Luiz F. R. Menegazzo, Anderson L. N. Severo, Lucas Bisêlo Piton, Catherine Marquioro de Freitas, Ricardo Jochann Franceschi Bortolini, Lucas Vizzotto Bellinaso, Leandro Michels, Fernanda de Morais Carnielutti
This work is licensed under a Creative Commons Attribution 4.0 International License.