Experimental Investigation of an Algorithmic Approach for Optimizing DAB Converter Design
DOI:
https://doi.org/10.18618/REP.e202444Keywords:
Dual-Active Bridge, High-frequency magnetic, On-board charger, Optimum designAbstract
This study endeavors to optimize a dual active bridge (DAB) converter for seamless integration into an electric vehicle's on-board charger (OBC). The optimization process employs an algorithm to ascertain the optimal construction parameters, encompassing factors such as the number of turns in the inductor, gap length, and the number of turns in the primary and secondary windings of the transformer. By considering seven meticulously chosen operating points, the objective is to minimize the total loss sum and pinpoint the optimal frequencies for each point. Subsequently, a lookup table is formulated to ensure efficient OBC operation across varying output power and current levels by optimizing the frequency as a single variable. To validate the optimization process, the power switch losses are compared with theoretical calculations, and simulation results from PLECS 4.7.2 are leveraged. Furthermore, a prototype is meticulously assembled and tested to validate the DAB converter optimization, ultimately achieving an impressive efficiency of over 97 %, thus affirming the efficacy of the optimization algorithm.
Downloads
References
M. Muratori, M. Alexander, D. Arent, M. Bazilian, P. Cazzola, E. M. Dede, J. Farrell, C. Gearhart, D. Greene, A. Jenn, M. Keyser, T. Lipman, S. Narumanchi, A. Pesaran, R. Sioshansi, E. Suomalainen, G. Tal, K. Walkowicz, J. Ward, “The rise of electric vehicles—2020 status and future expectations”, Progress in Energy, vol. 3, no. 2, p. 022002, mar 2021. DOI: https://doi.org/10.1088/2516-1083/abe0ad
C. Liu, K. T. Chau, D. Wu, S. Gao, “Opportunities and Challenges of Vehicle-to-Home, Vehicle-to-Vehicle, and Vehicle-to-Grid Technologies”, Proceedings of the IEEE, vol. 101, no. 11, pp. 2409–2427, 2013. DOI: https://doi.org/10.1109/JPROC.2013.2271951
S. Kampl, Topologies in on-board charging, Infineon, 2020.
K. Fahem, D. E. Chariag, L. Sbita, “On-board bidirectional battery chargers topologies for plug-in hybrid electric vehicles”, in 2017 International Conference on Green Energy Conversion Systems (GECS), pp. 1–6, 2017. DOI: https://doi.org/10.1109/GECS.2017.8066189
J. Zhang, Y. Shi, Z.-H. Zhan, “Power Electronic Circuits Design: A Particle Swarm Optimization Approach”, in X. Li, M. Kirley, M. Zhang, D. Green, V. Ciesielski, H. Abbass, Z. Michalewicz, T. Hendtlass, K. Deb, K. C. Tan, J. Branke, Y. Shi, eds., Simulated Evolution and Learning, pp. 605–614, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
Y. Shi, R. C. Eberhart, “Parameter selection in particle swarm optimization”, in V. W. Porto, N. Saravanan, D. Waagen, A. E. Eiben, eds., Evolutionary Programming VII, pp. 591–600, Springer Berlin Heidelberg, Berlin, Heidelberg, 1998. DOI: https://doi.org/10.1007/BFb0040810
Y. Deng, S. Yin, J. Chen, W. Song, “A Comprehensive SteadyState Performance Optimization Method of Dual Active Bridge DC-DC Converters Based onWith Triple-Phase-Shift Modulation”, in 2022 IEEE International Power Electronics and Application Conference and Exposition (PEAC), pp. 221–225, 2022. DOI: https://doi.org/10.1109/PEAC56338.2022.9959445
M. Safayatullah, M. T. Elrais, S. Ghosh, R. Rezaii, I. Batarseh, “A Comprehensive Review of Power Converter Topologies and Control Methods for Electric Vehicle Fast Charging Applications”, IEEE Access, vol. 10, pp. 40753–40793, 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3166935
F. Krismer, Modeling and optimization of bidirectional dual active bridge DC-DC converter topologies, Doctoral thesis, ETH Zurich, Zurich, 2010, doi:10.3929/ethz-a-006395373, diss., Eidgen ¨ ossische ¨ Technische Hochschule ETH Zurich, Nr. 19177, 2010.
F. Krismer, J. W. Kolar, “Accurate small-signal model for an automotive bidirectional Dual Active Bridge converter”, in 2008 11th Workshop on Control and Modeling for Power Electronics, pp. 1–10, 2008. DOI: https://doi.org/10.1109/COMPEL.2008.4634699
A. Rodr´ıguez, A. Vazquez, D. G. Lamar, M. M. Hernando, J. Sebastian, “Different Purpose Design Strategies and Techniques to Improve the Performance of a Dual Active Bridge With Phase-Shift Control”, IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 790–804, 2015. DOI: https://doi.org/10.1109/TPEL.2014.2309853
L. Song, H. Ramakrishnan, N. Kumar, M. Bhardwaj, Bidirectional, Dual Active Bridge Reference Design for Level 3 Electric Vehicle Charging Stations, Texas Instruments, Dallas, Texas, 2022.
W. Hurley, W. Wolfle, ¨ Transformers and inductors for power electronics: theory, design and applications, Wiley, Hoboken, NJ, 2013, URL: http://cds.cern.ch/record/1616895. DOI: https://doi.org/10.1002/9781118544648
S. Geng, M. Chu, W. Wang, P. Wan, X. Peng, H. Lu, P. Li, “Modelling and optimization of winding resistance for litz wire inductors”, IET Power Electronics, vol. 14, no. 10, pp. 1834–1843, 2021. DOI: https://doi.org/10.1049/pel2.12152
M. K. Kazimierczuk, “High-Frequency Magnetic Components: Second Edition”, High-Frequency Magnetic Components: Second Edition, pp. 1–729, 11 2013. DOI: https://doi.org/10.1002/9781118717806
B. Bertoldi, “Systematic procedures for the design of passive components applied to a high performance three-phase rectifier”, , 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rossano Mendes Sotoriva, Mateus de Freitas Bueno, Douglas Mendes Sotoriva, Franciéli Lima de Sá, Samir Ahmad Mussa
This work is licensed under a Creative Commons Attribution 4.0 International License.