Um Controle Orientado a Campo Aprimorado para Sistemas de Conversão de Energia Eólica Usando Grasshopper Optimizer
DOI:
https://doi.org/10.18618/REP.e202448Keywords:
Energia E´olica, Energia Renov´avel, Geradores S´ıncronos de ´Im˜as Permanentes, Otimizaç˜ao Meta-heur´ısticaAbstract
O setor energético global vem modernizando seus sistemas de conversão de energia, substituindo os meios tradicionais de geração de potência por sistemas de conversão de energia renovável para reduzir os impactos ambientais inerentes aos sistemas de produção de potência ultrapassados. Nas últimas décadas, a geração de potência usando energia eólica como fonte primária de energia vem continuamente aumentando sua participação no suprimento desta demanda. Nestes sistemas, geradores síncronos de ímãs permanentes são largamente utilizados devido suas diversas vantagens, sendo o controle orientado a campo, composto por dois controladores proporcionais-integrais independentes, uma das estratégias de controle mais eficientes para regular as correntes em coordenadas dq. Neste viés, este trabalho apresenta um procedimento sistemático para parametrização deste controlador usando o algoritmo grasshopper optimizer. Para orientar os projetistas de controle que queiram utilizar a metodologia proposta, seis configurações diferentes do otimizador são discutidas para avaliar o impacto da configuração do otimizador na qualidade das soluções propostas ao problema de controle avaliado. Uma comparação com o método de sintonia clássico de Chien, Hrone e Reswick também é apresentado, onde o procedimento proposto demonstra superioridade.
Downloads
References
P. J. D. O. Evald, R. V. Tambara, H. A. Grundling, “A direct discrete-time reduced order robust model reference adaptive control for grid tied power converters with LCL filter”, Eletrônica de Potência, vol. 25, no. 3, pp. 361–372, Setembro 2020, doi:10.18618/REP.2020.3.0039. DOI: https://doi.org/10.18618/REP.2020.3.0039
P. J. D. O. Evald, G. V. Hollweg, R. V. Tambara, H. A. Grundling, “A discrete-time robust adaptive PI controller for grid-connected voltage source converter with LCL filter”, Eletrônica de Potência, vol. 26, no. 1, pp. 19–30, Março 2021. DOI: https://doi.org/10.18618/REP.2021.1.0053
B. Clarke, F. Otto, R. Stuart-Smith, L. Harrington, “Extreme weather impacts of climate change: an attribution perspective”, Environmental Research: Climate, vol. 1, no. 1, p. 12001, Junho 2022, doi:10.1088/2752-5295/ac6e7d. DOI: https://doi.org/10.1088/2752-5295/ac6e7d
G. V. Hollweg, P. J. D. O. Evald, E. Mattos, L. C. Borin, R. V. Tambara, H. A. Grundling, W. Su, “A Direct Adaptive Controller with Harmonic ¨ Compensation for Grid-connected Converters”, IEEE Transactions on Industrial Electronics, vol. 71, no. 3, pp. 2978–2989, Março 2024, doi:10.1109/TIE.2023.3270535. DOI: https://doi.org/10.1109/TIE.2023.3270535
M. Z. Malik, M. H. Baloch, M. Gul, G. S. Kaloi, S. T. Chauhdary, A. A. Memon, “A research on conventional and modern algorithms for maximum power extraction from wind energy conversion system: A review”, Environmental Science and Pollution Research, vol. 28, no. 5, pp. 5020–5035, Novembro 2021. DOI: https://doi.org/10.1007/s11356-020-11558-6
B. Mendi, M. Pattnaik, G. Srungavarapu, “A single current sensor based adaptive step size MPPT control of a small scale variable speed wind energy conversion system”, Applied Energy, vol. 357, p. 122492, Dezembro 2023. DOI: https://doi.org/10.1016/j.apenergy.2023.122492
A. M. Osman, F. Alsokhiry, “Sliding mode control for grid integration of wind power system based on direct drive PMSG”, IEEE Access, vol. 10, pp. 26567–26579, Março 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3157311
A. Raouf, K. B. Tawfiq, E. T. Eldin, H. Youssef, E. E. El-Kholy, “Wind energy conversion systems based on a synchronous generator: comparative review of control methods and performance”, Energies, vol. 16, no. 5, p. 2147, Fevereiro 2023. DOI: https://doi.org/10.3390/en16052147
M. Nasiri, J. Milimonfared, S. H. Fathi, “Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator-based wind turbines”, Energy Conversion and Management, vol. 86, pp. 892–900, Julho 2014. DOI: https://doi.org/10.1016/j.enconman.2014.06.055
F. Wang, Z. Zhang, X. Mei, J. Rodriguez, R. Kennel, “Advanced control strategies of induction machine: Field oriented control, direct torque control and model predictive control”, Energies, vol. 11, no. 1, p. 120, Janeiro 2018, doi:10.3390/en11010120. DOI: https://doi.org/10.3390/en11010120
M. Metwally Mahmoud, “Improved current control loops in wind side converter with the support of wild horse optimizer for enhancing the dynamic performance of PMSG-based wind generation system”, International Journal of Modelling and Simulation, vol. 43, no. 6, pp. 952–966, Outubro 2023. DOI: https://doi.org/10.1080/02286203.2022.2139128
H. Salime, B. Bossoufi, S. Motahhir, Y. El Mourabit, “A novel combined FFOC-DPC control for wind turbine based on the permanent magnet synchronous generator”, Energy Reports, vol. 9, pp. 3204– 3221, Fevereiro 2023. DOI: https://doi.org/10.1016/j.egyr.2023.02.012
N. Zine Laabidine, B. Bossoufi, I. El Kafazi, C. El Bekkali, N. El Ouanjli, “Robust Adaptive Super Twisting Algorithm Sliding Mode Control of a Wind System Based on the PMSG Generator”, Sustainability, vol. 15, no. 14, p. 10792, July 2023. DOI: https://doi.org/10.3390/su151410792
N. Mughees, M. H. Jaffery, M. Jawad, “A new predictive control strategy for improving operating performance of a permanent magnet synchronous generator-based wind energy and superconducting magnetic energy storage hybrid system integrated with grid”, Journal of Energy Storage, vol. 55, p. 105515, Agosto 2022. DOI: https://doi.org/10.1016/j.est.2022.105515
P. M. Meshram, R. G. Kanojiya, “Tuning of PID controller using Ziegler-Nichols method for speed control of DC motor”, in IEEE International Conference on Advances in Engineering, Science and Management (ICAESM 2012), pp. 117–122, IEEE, Marc¸o 2012.
T. Suksawat, P. Kaewpradit, “Comparison of Ziegler-Nichols and Cohen-Coon tuning methods: implementation to water level control based MATLAB and Arduino”, Engineering Journal Chiang Mai University, vol. 28, no. 1, pp. 153–168, Abril 2021.
I.-L. Chien, “IMC-PID controller design-an extension”, IFAC Proceedings Volumes, vol. 21, no. 7, pp. 147–152, Junho 1988. DOI: https://doi.org/10.1016/S1474-6670(17)53816-1
R. K. Mudi, N. R. Pal, “A self-tuning fuzzy PI controller”, Fuzzy Sets and Systems, vol. 115, no. 2, pp. 327–338, Junho 2000. DOI: https://doi.org/10.1016/S0165-0114(98)00147-X
M. Y. Hassan, G. Kothapalli, “Comparison between neural network based PI and PID controllers”, in 7th International Multi-Conference on Systems, Signals and Devices, pp. 1–6, IEEE, Setembro 2010. DOI: https://doi.org/10.1109/SSD.2010.5585598
S. Mirjalili, A. Lewis, “The whale optimization algorithm”, Advances in Engineering Software, vol. 95, pp. 51–67, Fevereiro 2016. DOI: https://doi.org/10.1016/j.advengsoft.2016.01.008
S. Saremi, S. Mirjalili, A. Lewis, “Grasshopper optimisation algorithm: theory and application”, Advances in Engineering Software, vol. 105, pp. 30–47, Janeiro 2017, doi:10.1016/j.advengsoft.2017.01.004. DOI: https://doi.org/10.1016/j.advengsoft.2017.01.004
M. Khishe, M. R. Mosavi, “Chimp optimization algorithm”, Expert Systems with Applications, vol. 149, p. 113338, Março 2020. DOI: https://doi.org/10.1016/j.eswa.2020.113338
F. A. Hashim, A. G. Hussien, “Snake Optimizer: A novel metaheuristic optimization algorithm”, Knowledge-Based Systems, vol. 242, p. 108320, Fevereiro 2022. DOI: https://doi.org/10.1016/j.knosys.2022.108320
G. V. Hollweg, P. J. D. O. Evald, E. Mattos, L. C. Borin, R. V. Tambara, V. F. Montagner, “Self-tuning methodology for adaptive controllers based on genetic algorithms applied for grid-tied power converters”, Control Engineering Practice, vol. 135, p. 105500, Marc¸o 2023, doi:10.1016/j.conengprac.2023.105500. DOI: https://doi.org/10.1016/j.conengprac.2023.105500
P. J. D. O. Evald, G. V. Hollweg, L. C. Borin, E. Mattos, R. V. Tambara, V. F. Montagner, H. A. Grundling, “An optimal initial- ¨ isation for robust model reference adaptive PI controller for gridtied power systems under unbalanced grid conditions”, Engineering Applications of Artificial Intelligence, vol. 124, p. 106589, Junho 2023. DOI: https://doi.org/10.1016/j.engappai.2023.106589
H. Benbouhenni, I. Colak, N. Bizon, “Application of genetic algorithm and terminal sliding surface to improve the effectiveness of the proportional–integral controller for the direct power control of the induction generator power system”, Engineering Applications of Artificial Intelligence, vol. 125, p. 106681, Julho 2023. DOI: https://doi.org/10.1016/j.engappai.2023.106681
M. Lara, J. Garrido, J.-W. van Wingerden, S. P. Mulders, F. Vazquez, ´ “Optimization with genetic algorithms of individual pitch control design with and without azimuth offset for wind turbines in the full load region”, IFAC-PapersOnLine, vol. 56, no. 2, pp. 342–347, Novembro 2023. DOI: https://doi.org/10.1016/j.ifacol.2023.10.1591
R. U. Viaro, L. C. Borin, R. Medke, E. Mattos, C. R. D. Osorio, V. F. ´ Montagner, “Otimização de controladores baseada em meta-heurística aplicada a conversores CC-CC com validação em hardware-in-the- loop”, Eletrônica de Potência, vol. 29, pp. e202408–e202408, Abril 2024, doi:10.18618/REP.2024.1.0040. DOI: https://doi.org/10.18618/REP.2024.1.0040
V. N. Ogar, S. Hussain, K. A. A. Gamage, “Load frequency control using the particle swarm optimisation algorithm and pid controller for effective monitoring of transmission line”, Energies, vol. 16, no. 15, p. 5748, Agosto 2023, doi:10.3390/en16155748. DOI: https://doi.org/10.3390/en16155748
J. Sun, M. Chen, L. Kong, Z. Hu, V. Veerasamy, “Regional load frequency control of BP-PI wind power generation based on particle swarm optimization”, Energies, vol. 16, no. 4, p. 2015, Fevereiro 2023. DOI: https://doi.org/10.3390/en16042015
G. V. Hollweg, P. J. D. O. Evald, E. Mattos, L. C. Borin, R. V. Tambara, V. F. Montagner, “Optimized parametrization of adaptive controllers for enhanced current regulation in grid-tied converters”, International Journal of Adaptive Control and Signal Processing, vol. 38, no. 1, pp. 200–220, Outubro 2024. DOI: https://doi.org/10.1002/acs.3696
P. J. D. O. Evald, G. V. Hollweg, L. C. Borin, E. Mattos, R. V. Tambara, V. F. Montagner, H. A. Grundling, “A smart parametrisation for robust adaptive PI controller applied on renewable energy power generation systems under weak and uttermost weak grid conditions”, Computers and Electrical Engineering, vol. 116, p. 109203, Marc¸o 2024, doi:10.1016/j.compeleceng.2024.109203. DOI: https://doi.org/10.1016/j.compeleceng.2024.109203
H. Salime, B. Bossoufi, Y. El Mourabit, S. Motahhir, “Robust nonlinear adaptive control for power quality enhancement of PMSG wind turbine: Experimental control validation”, Sustainability, vol. 15, no. 2, p. 939, Janeiro 2023. DOI: https://doi.org/10.3390/su15020939
L. B. K. Fisch, M. L. Heldwein, “10-MW direct-drive PMSG-based wind energy conversion system model”, in IEEE 21st workshop on control and modeling for power electronics (COMPEL), pp. 1–8, IEEE, Novembro 2020. DOI: https://doi.org/10.1109/COMPEL49091.2020.9265784
K. L. Chien, J. Hrones, J. B. Reswick, “On the automatic control of generalized passive systems”, Transactions of the American Society of Mechanical Engineers, vol. 74, no. 2, pp. 175–183, Julho 1952. DOI: https://doi.org/10.1115/1.4015724
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Paulo Jefferson Dias de Oliveira Evald, Matheus Schramm Dall’asta, Jéssika Melo de Andrade, Lenon Schmitz, Telles Brunelli Lazzarin
This work is licensed under a Creative Commons Attribution 4.0 International License.