Analysis of a MMC-Based 12-MW Direct-Drive Wind Energy Conversion System With Level-Shifted and PS-PWM and NLM Strategies

Authors

DOI:

https://doi.org/10.18618/REP.e202449

Keywords:

Level-Shifted PWM, Modular Multilevel Converter, Nearest-Level Modulation, Phase-Shifted PWM, Wind Energy Conversion

Abstract

This paper analyzes a 12-MW direct-drive wind energy converter system featuring a 6.6-kV, 132-pole permanent magnet synchronous generator, similar to the Haliade-X 12-MW manufactured by General Electric. The proposed system utilizes a back-to-back modular multilevel converter (B2B-MMC) with four submodules per arm. The research investigates three modulation strategies: nearest level modulation and two variants of multicarrier pulse width modulation that incorporate level-shift and phase-shift techniques. Additionally, it examines the interaction between the generator's low frequency and the design parameters of the MMC. Thus, this paper contributes to the understanding of the effectiveness of the B2B-MMC as a viable solution for direct-drive low-frequency wind generators. Furthermore, it analyzes how the modulation strategy and voltage equalization algorithm impact system performance, especially with the implementation of a subsampling technique. Digital simulations carried out with PSCAD/EMTDC provide a comparative analysis of the three modulation strategies investigated.

Downloads

Download data is not yet available.

Author Biographies

Andrei O. Almeida, Federal Center for Technological Education of Minas Gerais

received the B.S., M.Sc., and Ph.D. degrees in Electrical Engineering from the Federal University of Juiz de Fora, Brazil, in 2017, 2019, and 2023, respectively. Since 2019 he is professor at Federal Center for Technological Education of Minas Gerais, Campus Leopoldina. His areas of interest include: renewable energy sources, modular multilevel converter, HVDC transmission and microgrids. Dr. Andrei O. Almeida is member of the SOBRAEP and SBA.

Matheus S. Paulo, Universidade Federal de Juiz de Fora

received the B.S. and M.Sc. degrees in Electrical Engineering from the Federal University of Juiz de Fora, Brazil, in 2021 and 2023, respectively. He has been working at Operador Nacional do Sistema Elétrico (ONS) since 2023.

Daniel P. Teixeira, Universidade Federal de Juiz de Fora

received the B.S. degree in Control and Automation Engineering from CEFET-MG, Brazil, in 2016 and the M.Sc. degree in Electrical Engineering from the Federal University of Juiz de Fora, Brazil, in 2024.

Rodolfo Lacerda Valle, Federal Center for Technological Education of Minas Gerais

received the B.S. degree in Control and Automation Engineering from CEFET-MG, Brazil, in 2010 and the M.Sc. and Ph.D. degrees in Electrical Engineering from the Federal University of Juiz de Fora, Brazil, in 2013 and 2017, respectively. Since 2014 he has been professor at Federal Center for Technological Education of Minas Gerais, Campus Leopoldina.

Pedro M. Almeida, Universidade Federal de Juiz de Fora

received the B.S., M.Sc., and Ph.D. degrees in Electrical Engineering from the Federal University of Juiz de Fora, Brazil, in 2009, 2011, and 2013, respectively. Since 2014 he has been an Associate Professor in the Department of Electrical Energy at the Federal University of Juiz de Fora.

Pedro Gomes Barbosa, Universidade Federal de Juiz de Fora

received the B.S. degree in electrical engineering from the Federal University of Juiz de Fora, Brazil, in 1986 and the M.Sc. and Ph.D. degrees in electrical engineering from the Federal University of Rio de Janeiro, Brazil, in 1994 and 2000, respectively. Since 2016 he has been Full Professor in the Department of Electrical Energy at Federal University of Juiz de Fora.

References

B. Wu, Y. Lang, N. Zargari, S. Kouro, Power conversion and control of wind energy systems, vol. 76, John Wiley & Sons, 2011. DOI: https://doi.org/10.1002/9781118029008

S. Rajendran, M. Diaz, R. C´ardenas, E. Espina, E. Contreras, J. Rodriguez, “A Review of Generators and Power Converters for Multi-MW Wind Energy Conversion Systems”, Processes, vol. 10, no. 11, p. 2302, 2022. DOI: https://doi.org/10.3390/pr10112302

P. Catal´an, Y. Wang, J. Arza, Z. Chen, “A Comprehensive Overview of Power Converter Applied in High-Power Wind Turbine: Key Challenges and Potential Solutions”, IEEE Transactions on Power Electronics, 2023. DOI: https://doi.org/10.1109/TPEL.2023.3234221

J. Xing, W. Yu, Y. Song, Y. Zhang, Z. Dai, “Design and analysis of 12 MW offshore wind turbine”, Energy Reports, vol. 8, pp. 375–383, 2022. DOI: https://doi.org/10.1016/j.egyr.2022.05.172

A. Bensalah, G. Barakat, Y. Amara, “Electrical generators for large wind turbine: trends and challenges”, Energies, vol. 15, no. 18, p.6700, 2022. DOI: https://doi.org/10.3390/en15186700

J. Wang, R. Qu, Y. Tang, Y. Liu, B. Zhang, J. He, Z. Zhu, H. Fang, L. Su, “Design of a superconducting synchronous generator with LTS field windings for 12 MW offshore direct-drive wind turbines”, IEEE transactions on industrial electronics, vol. 63, no. 3, pp. 1618–1628, 2015. DOI: https://doi.org/10.1109/TIE.2015.2415758

B.-S. Go, H.-J. Sung, M. Park, I.-K. Yu, “Structural design of a module coil for a 12-MW class HTS generator for wind turbine”, IEEE Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1–5, 2017. DOI: https://doi.org/10.1109/TASC.2017.2669155

Z. Xu, R. Li, H. Zhu, D. Xu, C. Zhang, “Control of parallel multiple converters for direct-drive permanent-magnet wind power generation systems”, IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1259–1270, 2011. DOI: https://doi.org/10.1109/TPEL.2011.2165224

V. Yaramasu, B. Wu, Model predictive control of wind energy conversion systems, John Wiley & Sons, 2016. DOI: https://doi.org/10.1002/9781119082989

F. Iov, F. Blaabjerg, J. Clare, P. Wheeler, A. Rufer, A. Hyde, “Uniflex-PM–a key-enabling technology for future European electricity networks”, Epe Journal, vol. 19, no. 4, pp. 6–16, 2009. DOI: https://doi.org/10.1080/09398368.2009.11463732

M. Wang, Y. Hu, W. Zhao, Y. Wang, G. Chen, “Application of modular multilevel converter in medium voltage high power permanent magnet synchronous generator wind energy conversion systems”, IET Renewable Power Generation, vol. 10, no. 6, pp. 824–833, 2016. DOI: https://doi.org/10.1049/iet-rpg.2015.0444

M. Saeedifard, R. Iravani, “Dynamic performance of a modular multilevel back-to-back HVDC system”, IEEE Transactions on power delivery, vol. 25, no. 4, pp. 2903–2912, 2010. DOI: https://doi.org/10.1109/TPWRD.2010.2050787

M. Soares, E. H. Watanabe, “MMC applied to pumped hydro storage using a differentiable approximation of a square wave as common-mode voltage during low-frequency operation”, in 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–8, IEEE, 2020. DOI: https://doi.org/10.1109/COMPEL49091.2020.9265759

B. Li, J. Hu, S. Zhou, D. Xu, “Hybrid back-to-back MMC system for variable speed AC machine drives”, CPSS Transactions on Power Electronics and Applications, vol. 5, no. 2, pp. 114–125, 2020. DOI: https://doi.org/10.24295/CPSSTPEA.2020.00010

Z. Liu, K. Li, Y. Sun, J. Wang, Z. Wang, K. Sun, M. Wang, “A steady-state analysis method for modular multilevel converters connected to permanent magnet synchronous generator-based wind energy conversion systems”, Energies, vol. 11, no. 2, p. 461, 2018. DOI: https://doi.org/10.3390/en11020461

T. Nakanishi, K. Orikawa, J.-i. Itoh, “Modular Multilevel Converter for wind power generation system connected to micro-grid”, in 2014 International Conference on Renewable Energy Research and Application (ICRERA), pp. 653–658, IEEE, 2014. DOI: https://doi.org/10.1109/ICRERA.2014.7016466

T. M. Iversen, S. S. Gjerde, T. Undeland, “Multilevel converters for a 10 MW, 100 kV transformer-less offshore wind generator system”, in 2013 15th European Conference on Power Electronics and Applications (EPE), pp. 1–10, IEEE, 2013. DOI: https://doi.org/10.1109/EPE.2013.6634753

A. O. Almeida, M. S. Paulo, D. P. Teixeira, R. L. Valle, P. M. Almeida, P. G. Barbosa, “Pulse-Width and Nearest-Level Modulation Strategies Applied to a MMC-Based 12 MW Direct-Drive Wind Energy Conversion System”, in 2023 IEEE 8th Southern Power Electronics Conference (SPEC), pp. 1–7, IEEE, 2023. DOI: https://doi.org/10.1109/SPEC56436.2023.10407513

J. B. Soomro, F. Akhter, S. Ali, S. S. H. Bukhari, I. Sami, J.-S. Ro, “Modified nearest level modulation for full-bridge based HVDC MMC in real-time hardware-in-loop setup”, IEEE Access, vol. 9, pp. 114998–115005, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3105690

F. T. Ghetti, A. O. Almeida, P. M. Almeida, P. G. Barbosa, “Real time simulation of DC voltage equalization algorithms of a modular multilevel converter”, Brazilian Power Electronics Journal, vol. 22, no. 4, pp. 362–371, 2017.

M. A. Perez, S. Ceballos, G. Konstantinou, J. Pou, R. P. Aguilera, “Modular multilevel converters: Recent achievements and challenges”, IEEE Open Journal of the Industrial Electronics Society, vol. 2, pp. 224–239, 2021. DOI: https://doi.org/10.1109/OJIES.2021.3060791

A. Yazdani, R. Iravani, Voltage-sourced converters in power systems, John Wiley & Sons, 2010. DOI: https://doi.org/10.1002/9780470551578

K. Sharifabadi, L. Harnefors, H.-P. Nee, S. Norrga, R. Teodorescu, Design, control, and application of modular multilevel converters for HVDC transmission systems, John Wiley & Sons, 2016. DOI: https://doi.org/10.1002/9781118851555

A. O. Almeida, F. T. Ghetti, A. S. Ribeiro, P. M. Almeida, P. G. Barbosa, “Circulating currents suppression strategies for modular multi-level converter”, in Brazilian Power Electronics Conference (COBEP), Juiz de Fora, IEEE, 2017. DOI: https://doi.org/10.1109/COBEP.2017.8257263

W. Wang, K. Ma, X. Cai, “Flexible nearest level modulation for modular multilevel converter”, IEEE Transactions on Power Electronics, vol. 36, no. 12, pp. 13686–13696, 2021. DOI: https://doi.org/10.1109/TPEL.2021.3089706

A. Timofejevs, D. Gamboa, M. Liserre, R. Teodorescu, S. K. Chaudhary, “Control of transformerless MMC-HVDC during asymmetric grid faults”, in IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, pp. 2016–2021, IEEE, 2013. DOI: https://doi.org/10.1109/IECON.2013.6699441

M. Rosyadi, A. Umemura, R. Takahashi, J. Tamura, “Detailed and Average models of a grid-connected MMC-controlled permanent magnet wind turbine generator”, Applied Sciences, vol. 12, no. 3, p. 1619, 2022, doi:10.3390/app12031619. DOI: https://doi.org/10.3390/app12031619

B. Wu, M. Narimani, High-power converters and AC drives, 2 ed., John Wiley & Sons, 2017. DOI: https://doi.org/10.1002/9781119156079

N. Mohan, T. M. Undeland, W. P. Robbins, Power electronics: converters, applications, and design, 3 ed., John wiley & sons, 2003.

R. Langella, A. Testa, E. Alii, et al., “IEEE recommended practice and requirements for harmonic control in electric power systems”, in IEEE recommended practice, IEEE, 2014.

Z. Xu, H. Xiao, Z. Zhang, “Selection methods of main circuit parameters for modular multilevel converters”, IET Renewable Power Generation, vol. 10, no. 6, pp. 788–797, 2016, doi:10.1049/iet-rpg.2015.0434. DOI: https://doi.org/10.1049/iet-rpg.2015.0434

P. G. Barbosa, A proposal of an advanced series compensator based on PWM voltage source converters, Master Thesis (Electrical Engineering), Federal University of Rio de Janeiro, 1994.

Downloads

Published

2024-11-14

How to Cite

[1]
A. O. Almeida, M. S. Paulo, D. P. Teixeira, R. L. Valle, P. M. Almeida, and P. G. Barbosa, “Analysis of a MMC-Based 12-MW Direct-Drive Wind Energy Conversion System With Level-Shifted and PS-PWM and NLM Strategies”, Eletrônica de Potência, vol. 29, p. e202449, Nov. 2024.

Issue

Section

Special Issue - COBEP/SPEC 2023