Sensorless MPPT Algorithms for PV Systems in Partially Shaded Scenarios
DOI:
https://doi.org/10.18618/REP.e202452Keywords:
MPPT, sensorless, metaheuristic, reduced cost, partial shading conditions, photovoltaic arraysAbstract
This manuscript presents current sensorless algorithms for maximum power point tracking (MPPT) in partially shaded photovoltaic (PV) systems. The necessity of a current sensor is eliminated with the use of mathematical modeling of the power electronics converter. This approach significantly reduces the implementation cost and the inherent disadvantages in the current sensor circuitry. MPPT techniques based on soft computing are employed, in addition to Perturb and Observe (P&O), due to their ability to explore a larger search space. This feature is advantageous because it minimizes convergence risk to a local maximum, a limitation of traditional techniques. Simulation and experimental results are presented and each algorithm is evaluated through different metrics, such as search time for the global maximum power point (GMPP) and efficiency. The tests consider dynamic irradiance profiles, producing a tracking factor (TF) above 99% and a remarkable fast convergence time.
Downloads
References
Teo, J. C. et al. Impact of partial shading on the PV characteristics and the maximum power of a photovoltaic string. Energies, v. 11, n. 7, p. 1860, 2018. DOI: https://doi.org/10.3390/en11071860
Esram, T,; Chapman, P. L. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion, New York, v.24, n.2, p. 439-449, 2007. DOI: https://doi.org/10.1109/TEC.2006.874230
Faranda, R.; Leva, S.; Maugeri, V. MPPT techniques for PV systems: Energetic and cost comparison. In: POWER AND ENERGY SOCIETY GENERAL MEETING - PESGM, 9., 2008, Pittsburgh. Proceedings. Pittsburgh: IEEE, 2008. p. 1-6. DOI: https://doi.org/10.1109/PES.2008.4596156
Jain, S.; Agarwal, V. Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems. IET Electric Power Applications, United Kingdom, v. 3, n. 3, p. 753-762, 2007. DOI: https://doi.org/10.1049/iet-epa:20060475
Tepe, Izviye Fatimanur; Irmak, Erdal. Review and comparative analysis of metaheuristic MPPT algorithms in PV systems under partial shading conditions. In: 2022 11th International Conference on Renewable Energy Research and Application (ICRERA). IEEE, 2022. p. 471-479. DOI: https://doi.org/10.1109/ICRERA55966.2022.9922868
Dziri, Samia et al. Improved Particle Swarm Optimizer-Based MPPT Control of PV Systems Under Dynamic Partial Shading. In: 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 2022. p. 1603-1608. DOI: https://doi.org/10.1109/SSD54932.2022.9955506
Elobaid, Lina M.; ABDELSALAM, Ahmed K.; ZAKZOUK, Ezeldin E. Artificial neural network‐based photovoltaic maximum power point tracking techniques: a survey. IET Renewable Power Generation, v. 9, n. 8, p. 1043-1063, 2015. DOI: https://doi.org/10.1049/iet-rpg.2014.0359
Karatepe, E. et al. Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions. IET Renewable Power Generation, v. 3, n. 2, p. 239-253, 2009. DOI: https://doi.org/10.1049/iet-rpg:20080065
A. Mani, S. K and S. Maiti, "A Novel Hybrid Global MPPT Technique for Grid connected PV Systems," 2021 National Power Electronics Conference (NPEC), Bhubaneswar, India, 2021, pp. 1-6. DOI: https://doi.org/10.1109/NPEC52100.2021.9672489
De Brito, M. A. G.; Martines, G. M. S.; Volpato, A. S.; Godoy, R. B.; Batista, E. A. Current Sensorless Based on PI MPPT Algorithms. Sensors 2023, 23, 4587. DOI: https://doi.org/10.3390/s23104587
De Brito, Moacyr A. G. et al. Current Sensorless MPPT Algorithms for PV Systems with Partial Shading. In: 2023 IEEE 8th Southern Power Electronics Conference (SPEC). IEEE, 2023. p. 1-8. DOI: https://doi.org/10.1109/SPEC56436.2023.10408140
Kennedy, James; Eberhart, Russell. Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks. IEEE, 1995. p. 1942-1948. DOI: https://doi.org/10.1109/ICNN.1995.488968
Alshareef, Muhannad et al. Accelerated particle swarm optimization for photovoltaic maximum power point tracking under partial shading conditions. Energies, v. 12, n. 4, p. 623, 2019. DOI: https://doi.org/10.3390/en12040623
Yang, Xin-She. Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. p. 169-178. DOI: https://doi.org/10.1007/978-3-642-04944-6_14
Watanabe, Rodrigo Bairros et al. Implementation of the Bio-Inspired Metaheuristic Firefly Algorithm (FA) Applied to Maximum Power Point Tracking of Photovoltaic Systems. Energies, v. 15, n. 15, p. 5338, 2022. DOI: https://doi.org/10.3390/en15155338
Mirjalili, Seyedali; Mirjalili, Seyed Mohammad; Lewis, Andrew. Grey wolf optimizer. Advances in engineering software, v. 69, p. 46-61, 2014. DOI: https://doi.org/10.1016/j.advengsoft.2013.12.007
Mohanty, Satyajit; Subudhi, Bidyadhar; Ray, Pravat Kumar. A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions. IEEE Transactions on Sustainable Energy, v. 7, n. 1, p. 181-188, 2015. DOI: https://doi.org/10.1109/TSTE.2015.2482120
Millah, Ibrahim Saiful et al. An enhanced grey wolf optimization algorithm for photovoltaic maximum power point tracking control under partial shading conditions. IEEE Open Journal of the Industrial Electronics Society, v. 3, p. 392-408, 2022. DOI: https://doi.org/10.1109/OJIES.2022.3179284
Brito, M. A. G.; Sampaio, L. P.; Galotto Junior, L.; Canesin, Carlos Alberto. Evaluation of the Main MPPT Techniques for Photovoltaic Applications. IEEE Transactions on Industrial Electronics (1982. Print), v. 60, p. 1156-1167, 2013. DOI: https://doi.org/10.1109/TIE.2012.2198036
G. Cimini, G. Ippoliti, G. Orlando, S. Longhi and R. Miceli, "Robust current observer design for DC-DC converters," 2014 International Conference on Renewable Energy Research and Application (ICRERA), Milwaukee, WI, USA, 2014, pp. 958-963. DOI: https://doi.org/10.1109/ICRERA.2014.7016527
K. Biswas and O. Ray, "A Nonintrusive Digital Current Sensing Method for DC–DC Converters With Wide Load Range," in IEEE Sensors Letters, vol. 7, no. 6, pp. 1-4, June 2023, Art no. 6002704. DOI: https://doi.org/10.1109/LSENS.2023.3276777
Casaro, M. M.; Martins, D. C. Modelo de arranjo fotovoltaico destinado a análises em eletrônica de potência via simulação. Eletrônica de Potência, v. 13, n. 3, p. 141-146, 2008. DOI: https://doi.org/10.18618/REP.2008.3.141146
Brito, Moacyr A. G. de, Victor A. Prado, Edson A. Batista, Marcos G. Alves, and Carlos A. Canesin. 2021. "Design Procedure to Convert a Maximum Power Point Tracking Algorithm into a Loop Control System" Energies 14, no. 15: 4550.
Chao, Kuei-Hsiang; Lin, Yu-Sheng; Lai, Uei-Dar. Improved particle swarm optimization for maximum power point tracking in photovoltaic module arrays. Applied energy, v. 158, p. 609-618, 2015. DOI: https://doi.org/10.1016/j.apenergy.2015.08.047
Farzaneh, Javad; Keypour, Reza; Khanesar, Mojtaba Ahmadieh. A new maximum power point tracking based on modified firefly algorithm for PV system under partial shading conditions. Technology and Economics of Smart Grids and Sustainable Energy, v. 3, p. 1-13, 2018. DOI: https://doi.org/10.1007/s40866-018-0048-7
De Brito, Moacyr A. G.; Batista, E. A.; Prado, V. A.; Alves, M. G.; Canesin, C. A. . Design Procedure to Convert a Maximum Power Point Tracking Algorithm into a Loop Control System. Energies, v. 14, p. 4550, 2021. DOI: https://doi.org/10.3390/en14154550
Da Rocha, Maykon Vichoski; Sampaio, Leonardo Poltronieri; Da Silva, Sérgio Augusto Oliveira. Comparative analysis of ABC, Bat, GWO and PSO algorithms for MPPT in PV systems. In: 2019 8th international conference on renewable energy research and applications (ICRERA). IEEE, 2019. p. 347-352. DOI: https://doi.org/10.1109/ICRERA47325.2019.8996520
Hanzaei, Saeed H.; Gorji, Saman A.; Ektesabi, Mehran. A scheme-based review of MPPT techniques with respect to input variables including solar irradiance and PV arrays’ temperature. IEEE Access, v. 8, p. 182229-182239, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3028580
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Guilherme M. S. Martines, Moacyr A. G. de Brito, Edson A. Batista, Ruben B. Godoy, Tiago H. A. Mateus
This work is licensed under a Creative Commons Attribution 4.0 International License.