Overview of Black-Box Arc Models and Parameter Identification Techniques for Simulation of PV Systems

Authors

DOI:

https://doi.org/10.18618/REP.e202455

Keywords:

DC arcs, metaheuristics, parameters identification, solar energy

Abstract

Solar energy is widely regarded as an environmentally friendly and sustainable source of power. It reduces greenhouse gas emissions and dependency on fossil fuels, contributing to a cleaner environment. It also provides cost savings and enhances energy security. However, technical challenges persist. Poor installation, inadequate maintenance, and aging can degrade photovoltaic (PV) systems, leading to failures or faults. These issues increase the risk of power losses, electrical shocks, and fires. Direct Current (DC) arcs, in particular, pose a significant fire hazard in PV systems due to their unpredictability and high potential for damage. However, accurately defining parameters for real-world DC arc faults is difficult. Developing computational models of electric arcs is essential for simulating, analyzing, and detecting these faults. In that sense, this work provides a comprehensive overview of the prominent black-box arc models documented in the scientific literature, along with various methods for parameter identification, to facilitate the investigation of arc-related incidents within PV systems.

Downloads

Download data is not yet available.

Author Biographies

Mauricio Taconelli, Universidade Estadual de Campinas (UNICAMP)

PhD student in Electrical Engineering at the State University of Campinas (UNICAMP). Bachelor's degree in Electrical Engineering - Emphasis on Energy Systems and Automation from the University of São Paulo - USP (2017) and Master's degree in Electrical Engineering from the Federal University of São Carlos - UFSCar (2021). Lines of research: power electronics, renewable energy, faults in photovoltaic systems.

Luiz F. P. de Oliveira, Universidade Estadual de Campinas (UNICAMP)

graduated in Electronic Engineering, with Academic Merit, from Federal University of Technology of Paraná (UTFPR, 2017), M.Sc. degree in Electrical and Computer Engineering with specialization in Autonomous Systems from the School of Engineering, Polytechnic Institute of Porto (ISEP-IPP, 2017), and M.Sc. and Ph.D. degree in Electrical Engineering with specialization in Electronics, Microelectronics and Optoelectronics from the University of Campinas (UNICAMP, 2020 and 2023). He is currently a Postdoctoral researcher at the CEPETRO. His research interests are: sensor electronic circuits, microcontroller systems, smart devices, wireless sensor networks, internet of things, smart cities, energy harvesting, robotics, legged robots and hexapod robots. Mr. Oliveira is a Student Member of the Brazilian Automation Society (SBA) and Effective Associate of the Brazilian Society of Microelectronics (SBMicro).

João A. F. G. da Silva, Universidade Estadual de Campinas (UNICAMP)

currently undergrad in electrical engineering by UNICAMP, maintenance electrician by SENAI. Current research topics include power electronics, arc fault in PV systems, PV monitoring and performance.

Denis G. Fantinato, Universidade Estadual de Campinas (UNICAMP)

received the B.S. (2011), M.Sc. (2013) and Ph.D. (2017) degrees in Electrical Engineering from the University of Campinas (UNICAMP), and performed a sandwich Ph.D. (2016) at GIPSA-lab, France. Currently, he is an Assistant Professor at School of Electrical and Computer Engineering (FEEC) at the same university. His main research interests are machine learning, computational intelligence, information-theoretic learning, arc fault in PV systems.

Tarcio A. S. Barros, Universidade Estadual de Campinas (UNICAMP)

holds a Bachelor’s degree in Electrical Engineering from the Federal University of Vale do São Francisco (2010), where he graduated with honors. He earned a Master’s and a Ph.D. in Electrical Engineering at UNICAMP in 2012 and 2015, respectively. Currently, he is an MS5.1 professor at UNICAMP. He is affiliated with IEEE, the Brazilian Society of Automatics (SBA), and the Brazilian Power Electronics Society (SOBRAEP). He is the main coordinator of the LEPO / LESF-MV.

References

C. Zhang, Z. Kang, C. Lv, Q. Jia, “Photovoltaic DC Series Arc Fault Identification Method Based on Precise Noise Reduction Algorithm”, IEEE Sensors Journal, vol. 24, no. 4, pp. 4746–4757, 2024. DOI: https://doi.org/10.1109/JSEN.2023.3344759

N. M. Haegel, S. R. Kurtz, “Global Progress Toward Renewable Electricity: Tracking the Role of Solar (Version 3)”, IEEE Journal of Photovoltaics, vol. 13, no. 6, pp. 768–776, 2023. DOI: https://doi.org/10.1109/JPHOTOV.2023.3309922

F. Al-Janahi, S. Shukri, L. Al-Huneidi, A. Al-Shammary, K. Abdulmawjood, J. J. Boutros, R. S. Balog, “An Automated Testbed for PV Arcs Analysis”, in 2024 4th International Conference on Smart Grid and Renewable Energy (SGRE), pp. 1–6, 2024. DOI: https://doi.org/10.1109/SGRE59715.2024.10428979

I. Kaaya, M. Koehl, A. P. Mehilli, S. de Cardona Mariano, K. A. Weiss, “Modeling Outdoor Service Lifetime Prediction of PV Modules: Effects of Combined Climatic Stressors on PV Module Power Degradation”, IEEE Journal of Photovoltaics, vol. 9, no. 4, pp. 1105– 1112, 2019. DOI: https://doi.org/10.1109/JPHOTOV.2019.2916197

Z. Wu, Y. Hu, J. X. Wen, F. Zhou, X. Ye, “A Review for Solar Panel Fire Accident Prevention in Large-Scale PV Applications”, IEEE Access, vol. 8, pp. 132466–132480, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3010212

J. Johnson, B. Pahl, C. Luebke, T. Pier, T. Miller, J. Strauch, S. Kuszmaul, W. Bower, “Photovoltaic DC Arc Fault Detector Testing at Sandia National Laboratories”, in 2011 37th IEEE Photovoltaic Specialists Conference, pp. 003614–003619, 2011. DOI: https://doi.org/10.1109/PVSC.2011.6185930

X. Yao, L. Herrera, S. Ji, K. Zou, J. Wang, “Characteristic Study and Time-Domain Discrete- Wavelet-Transform Based Hybrid Detection of Series DC Arc Faults”, IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 3103–3115, 2014, doi:10.1109/TPEL.2013.2273292. DOI: https://doi.org/10.1109/TPEL.2013.2273292

Y. Wang, L. Hou, K. C. Paul, Y. Ban, C. Chen, T. Zhao, “ArcNet:

Series AC Arc Fault Detection Based on Raw Current and Convolutional Neural Network”, IEEE Transactions on Industrial Informatics, vol. 18, no. 1, pp. 77–86, 2022, doi:10.1109/TII.2021.3069849. DOI: https://doi.org/10.1109/TII.2021.3069849

X. Yao, “Study on DC Arc Faults in Ring-Bus DC Microgrids With Constant Power Loads”, in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1–5, 2016. DOI: https://doi.org/10.1109/ECCE.2016.7855474

J. Johnson, J. Kang, “Arc-fault detector algorithm evaluation method utilizing prerecorded arcing signatures”, in 2012 38th IEEE Photovoltaic Specialists Conference, pp. 001378–001382, 2012. DOI: https://doi.org/10.1109/PVSC.2012.6317856

H. D. Vu, E. Calderon, P. Schweitzer, S. Weber, N. Britsch, “Multi criteria series arc fault detection based on supervised feature selection”, International Journal of Electrical Power and Energy Systems, vol. 113, pp. 23–24, 2024. DOI: https://doi.org/10.1016/j.ijepes.2019.05.012

F. Ramos, J. Neto, F. Almeida, S. Velazquez, B. Lima, “Compliance ´ Analysis of Series Arc-fault in AFCI- Equipped Inverters in Accordance with IEC 63027”, IEEE Latin America Transactions, vol. 22, no. 9, pp. 761–770, 2024. DOI: https://doi.org/10.1109/TLA.2024.10669358

S. Lu, B. Phung, D. Zhang, “A Comprehensive Review on DC Arc Faults and Their Diagnosis Methods in Photovoltaic Systems”, Renewable and Sustainable Energy Reviews, vol. 89, pp. 88–98, 2018. DOI: https://doi.org/10.1016/j.rser.2018.03.010

S. Lu, A. Sahoo, R. Ma, B. T. Phung, “DC Series Arc Fault Detection Using Machine Learning in Photovoltaic Systems: Recent Developments and Challenges”, in 2020 8th International Conference on Condition Monitoring and Diagnosis (CMD), pp. 416–421, 2020. DOI: https://doi.org/10.1109/CMD48350.2020.9287192

R. D. Telford, S. Galloway, B. Stephen, I. Elders, “Diagnosis of Series DC Arc Faults—A Machine Learning Approach”, IEEE Transactions on Industrial Informatics, vol. 13, no. 4, pp. 1598–1609, 2017. DOI: https://doi.org/10.1109/TII.2016.2633335

R. F. Ammerman, T. Gammon, P. K. Sen, J. P. Nelson, “DCArc Models and Incident-Energy Calculations”, IEEE Transactions on Industry Applications, vol. 46, no. 5, pp. 1810–1819, 2010. DOI: https://doi.org/10.1109/TIA.2010.2057497

V. Psaras, Y. Seferi, M. H. Syed, R. Munro, P. J. Norman, G. M. Burt, R. Compton, K. Grover, J. Collins, “Review of DC Series Arc Fault Testing Methods and Capability Assessment of Test Platforms for More-Electric Aircraft”, IEEE Transactions on Transportation Electrification, vol. 8, no. 4, pp. 4654–4667, 2022. DOI: https://doi.org/10.1109/TTE.2022.3189970

J. L. Putzke, F. M. Bayer, A. M. Jaime, C. A. Haab, L. V. Bellinaso, L. Michels, “Methodology for predicting the self-extinction of standardized arc faults in photovoltaic systems”, Solar Energy, vol. 278, p. 112714, 2024. DOI: https://doi.org/10.1016/j.solener.2024.112714

T. Ohtaka, V. Kertesz, R. P. Paul Smeets, “Novel Black-Box Arc ´ Model Validated by High-Voltage Circuit Breaker Testing”, IEEE Transactions on Power Delivery, vol. 33, no. 4, pp. 1835–1844, 2018. DOI: https://doi.org/10.1109/TPWRD.2017.2764108

Z. Yin, L. Wang, Y. Zhang, Y. Gao, “Parameter Identification of DC Arc Models Using Chaotic Quantum Cuckoo Search”, Applied Soft Computing, vol. 108, p. 107451, 2021. DOI: https://doi.org/10.1016/j.asoc.2021.107451

F. M. Uriarte, A. L. Gattozzi, J. D. Herbst, H. B. Estes, T. J. Hotz, A. Kwasinski, R. E. Hebner, “A DC Arc Model for Series Faults in Low Voltage Microgrids”, IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 2063–2070, 2012. DOI: https://doi.org/10.1109/TSG.2012.2201757

M. Taconelli, L. F. P. De Oliveira, J. A. F. G. Da Silva, T. A. S. Barros, M. G. Villalva, “A Comparative Analysis of Different DC Arc Models for PV Systems Application”, in 2023 IEEE 8th Southern Power Electronics Conference and 17th Brazilian Power Electronics Conference (SPEC/COBEP), pp. 1–8, 2023. DOI: https://doi.org/10.1109/SPEC56436.2023.10408020

V. view”, Babrauskas, “Electric Journal, Arc vol. Explosions—A Re2017, Fire Safety 89, pp. 7–15,. DOI: https://doi.org/10.1016/j.firesaf.2017.02.006

A. Khakpour, S. Franke, D. Uhrlandt, S. Gorchakov, R.-P. Methling, “Electrical Arc Model Based on Physical Parameters and Power Calculation”, IEEE Transactions on Plasma Science, vol. 43, no. 8, pp. 2721–2729, 2015. DOI: https://doi.org/10.1109/TPS.2015.2450359

W. Xi-xiu, L. Zhen-Biao, T. Yun, M. Wenjun, X. Xun, “Investigate on the Simulation of Black-Box Arc Model”, in 2011 1st International Conference on Electric Power Equipment - Switching Technology, pp. 629–636, 2011. DOI: https://doi.org/10.1109/ICEPE-ST.2011.6123163

S.-W. Lim, U. A. Khan, J.-G. Lee, B.-W. Lee, K.-S. Kim, C.-W. Gu, “Simulation analysis of DC arc in circuit breaker applying with conventional black box arc model”, in 2015 3rd International Conference on Electric Power Equipment – Switching Technology (ICEPE-ST), pp. 332–336, 2015. DOI: https://doi.org/10.1109/ICEPE-ST.2015.7368330

A. Cassie, “Theorie Nouvelle des Arcs de Rupture et de la Rigidite des Circuits”, Cigre, Report, vol. 102, pp. 588–608, 1939.

T. E. Browne, “A Study of A-C Arc Behavior Near Current Zero by Means or Mathematical Models”, Transactions of the American Institute of Electrical Engineers, vol. 67, no. 1, pp. 141–153, 1948. DOI: https://doi.org/10.1109/T-AIEE.1948.5059653

O. Mayr, “Beitrage zur Theorie des Statischen und des Dynamischen ¨ Lichtbogens”, Archiv fur Elektrotechnik ¨ , vol. 37, pp. 588–608, 1943. DOI: https://doi.org/10.1007/BF02084317

K. Zhang, S. Yao, Y. Wu, J. D. Yan, “A Method for Analysing and Characterizing the Arc Cooling Effect of Different Gases in Strong Axial Flow With SF6 and Air as Examples”, IEEE Transactions on Power Delivery, vol. 39, no. 2, pp. 740–750, 2024. DOI: https://doi.org/10.1109/TPWRD.2023.3336822

U. Habedank, “On the Mathematical Description of Arc Behaviour in the Vicinity of Current Zero”, etzArchiv, vol. 10, pp. 339–343, 1988.

R. Smeets, V. Kertesz, “Evaluation of High-Voltage Circuit Breaker ´ Performance with a New Validated Arc Model”, IEE Proceedings - Generation, Transmission and Distribution, vol. 147, pp. 121–125, March 2000. DOI: https://doi.org/10.1049/ip-gtd:20000238

J. Schwarz, “Dynamisches Verhalten eines Gasbeblasenen Turbulenzbestimmten Schaltlichtbogens”, ETZ-A, vol. 92, no. 3, pp. 389– 391, 1971.

P. Schavemaker, L. van der Slui, “An Improved Mayr-Type Arc Model Based on Current-Zero Measurements [Circuit Breakers]”, IEEE Transactions on Power Delivery, vol. 15, no. 2, pp. 580–584, 2000. DOI: https://doi.org/10.1109/61.852988

J. He, K. Wang, J. Li, “Application of an Improved Mayr-Type Arc Model in Pyro-Breakers Utilized in Superconducting Fusion Facilities”, Energies, vol. 14, no. 14, 2021. DOI: https://doi.org/10.3390/en14144383

M. Jalil, H. Samet, T. Ghanbari, “Time-Variant Schwarz Based Model for DC Series Arc Fault Modeling in Photovoltaic Systems”, IEEE Journal of Photovoltaics, vol. 12, no. 4, pp. 1078–1089, 2022. DOI: https://doi.org/10.1109/JPHOTOV.2022.3168499

M. Jalil, H. Samet, T. Ghanbari, M. Tajdinian, “An Enhanced Cassie–Mayr-Based Approach for DC Series Arc Modeling in PV Systems”, IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–10, 2021. DOI: https://doi.org/10.1109/TIM.2021.3124832

S. Misra, Y. Jin, “Chapter 11 - Multifrequency Electromagnetic Data Interpretation Using Particle Swarm Optimization and Ant Colony Optimization Methods”, in S. Misra, Y. Han, Y. Jin, P. Tathed, eds., Multifrequency Electromagnetic Data Interpretation for Subsurface Characterization, pp. 331–349, Elsevier, 2021. DOI: https://doi.org/10.1016/B978-0-12-821439-8.00009-4

C. Kravaris, J. Hahn, Y. Chu, “Advances and Selected Recent Developments in State and Parameter Estimation”, Computers and Chemical Engineering, vol. 51, pp. 111–123, 2013. DOI: https://doi.org/10.1016/j.compchemeng.2012.06.001

H. Rezk, A. G. Olabi, T. Wilberforce, E. T. Sayed, “A Comprehensive Review and Application of Metaheuristics in Solving the Optimal Parameter Identification Problems”, Sustainability, vol. 15, no. 7, 2023. DOI: https://doi.org/10.3390/su15075732

K. Rajwar, K. Deep, S. Das, “An Exhaustive Review of the Metaheuristic Algorithms for Search and Optimization: Taxonomy, Applications, and Open Challenges”, Artif Intell Rev, vol. 56, pp. 13187–13257, 2023. DOI: https://doi.org/10.1007/s10462-023-10470-y

L. of tice”, Yang, Machine A. Shami, Learning “On Hyperparameter Optimization Algorithms: Theory and Prac2020, Neurocomputing, vol. 415, pp. 295–316. DOI: https://doi.org/10.1016/j.neucom.2020.07.061

S. Cao, M. Junaid, J. Zhao, D. Yu, J. Wang, “Parameter Optimization of TP KEMA model for Liquid Nitrogen Arc by Heuristics Algorithms”, in 2023 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), pp. 1–2, 2023. DOI: https://doi.org/10.1109/ASEMD59061.2023.10369611

K. Belhouchet, A. Bayadi, M. E. Bendib, “Artificial Neural Networks (ANN) and Genetic Algorithm Modeling and Identification of Arc Parameter in Insulators Flashover Voltage and Leakage Current”, in 2015 4th International Conference on Electrical Engineering (ICEE), pp. 1–6, 2015. DOI: https://doi.org/10.1109/INTEE.2015.7416698

A. Carvalho, C. Portela, M. Lacorte, A. P. Puente, A. Fuchs, et. al., Disjuntores e Chaves - Aplicac¸ao em Sistemas de Potencia ˜ , CIGREFURNAS, Rio de Janeiro-Brazil, 1995.

J. A. Martinez-Velasco, Power System Transients: Parameter Determination, CRC Press, Boca Raton, FL, 2010.

R. Amsinck, “Verfahren Zur Ermittlung Der Das Ausschaltverhalten Bestimmenden Lichtbogenkenngroessen”, ETZ-A, vol. 48, p. 566, 1977.

R. Ruppe, Experimentelle Und Theoretische Untersuchungen Am Axial Bestromten Wechselstromlichtbogen Vor Dem Stromnulldurchgang ¨ , Ph.D. thesis, 1980.

H. Rijanto, “Experimentelle bestimmung der parameter der verallgemeinerten lichtbogengleichung zur berechnung von schaltvorgangen”, ¨ ETZ-A, vol. 95, no. 4, pp. 221–223, 1974.

B. Rodriguez-Medina, L. Orama, M. Velez-Reyes, “Arc Model Parameter Extraction Techniques Using Nonlinear Least Squares”, in Proceedings of the 35th North American power symposium, 10 2003.

F. P. Pessoa, J. S. Acosta, M. C. Tavares, in Calculo dos Parâmetros do Arco Elétrico em Sistemas de Corrente Contínua Utilizando Teoria de Identificação de Sistemas ˜ , vol. 2, pp. 1–7, 2020. DOI: https://doi.org/10.48011/asba.v2i1.1595

O. W. G. Asencios, Identificação dos Parâmetros do Arco Elétrico ´ Através de Estimação de Estados e Parâmetros ˆ , Ph.D. thesis, Universidade Federal do Rio de Janeiro, 2009.

G. Zhang, Y. Liu, L. Qi, Y. Xu, M. Kurrat, “Parameter Estimation of Black Box Arc Model Based on Heuristic Optimization Algorithms”, in 2018 IEEE Holm Conference on Electrical Contacts, pp. 66–70, 2018. DOI: https://doi.org/10.1109/HOLM.2018.8611668

A. Parizad, H. Baghaee, A. Tavakoli, S. Jamali, “Optimization of Arc Models Parameter Using Genetic Algorithm”, in 2009 International Conference on Electric Power and Energy Conversion Systems, (EPECS), pp. 1–7, 2009.

T. Chmielewski, T. Kuczek, P. Oramus, “Optimisation of Electric Arc Model Parameters Based on Simplex Annealing and Genetic Algorithms”, in MATEC Web of Conferences, vol. 252, p. 05001, EDP Sciences, 2019. DOI: https://doi.org/10.1051/matecconf/201925205001

S. Ghavami, A. A. Razi-Kazemi, K. Niayesh, “Estimation of the Arc Model Parameters Using Heuristic Optimization Methods”, in 2021 29th Iranian Conference on Electrical Engineering (ICEE), pp. 296– 301, 2021. DOI: https://doi.org/10.1109/ICEE52715.2021.9544132

F. P. Pessoa, J. S. Acosta, M. C. Tavares, “Parameter Estimation of DC Black-Box Arc Models Using Genetic Algorithms”, Electric Power Systems Research, vol. 198, p. 107322, 2021. DOI: https://doi.org/10.1016/j.epsr.2021.107322

Downloads

Published

2024-12-06

How to Cite

[1]
M. Taconelli, L. F. P. de Oliveira, J. A. F. G. da Silva, D. G. Fantinato, and T. A. S. Barros, “Overview of Black-Box Arc Models and Parameter Identification Techniques for Simulation of PV Systems”, Eletrônica de Potência, vol. 29, p. e202455, Dec. 2024.

Issue

Section

Special Issue - COBEP/SPEC 2023