Simple Method to Estimate Battery Lifetime and Upkeep of Lead-Acid and Lithium-Ion Batteries
DOI:
https://doi.org/10.18618/REP.e202456Keywords:
Lead-acid battery, Lifetime, Lithium ion, Lithium-iron phosphate, State of health, Uninter- ruptible Power SupplyAbstract
This work provides an event-oriented method to model and predict the lifetime of lead-acid and lithium-iron phosphate batteries. An ampere-hour integration method is proposed to be used in conjunction with the event-oriented method to achieve higher accuracy. The methods are applied to lead acid and lithium-iron phosphate batteries on a commercial 1~kW single-office/home-office uninterruptible power supply (UPS). Additional circuits for measurements, or microprocessors are avoided to not increase the UPS cost, reducing its market competitiveness. The usefulness of the proposed approach is demonstrated by an upkeep analysis based on the cost of the battery and the service time for each battery technology.
Downloads
References
M. Mann, V. Putsche, B. Shrager, Grid Energy Storage-Supply Chain Deep Dive Assessment, USDOE Office of Policy, 2022. DOI: https://doi.org/10.2172/1871557
S. Sabihuddin, A. E. Kiprakis, M. Mueller, “A numerical and graphical review of energy storage technologies”, Energies, vol. 8, no. 1, pp. 172–216, 2014. DOI: https://doi.org/10.3390/en8010172
P. Nikolaidis, A. Poullikkas, “Cost metrics of electrical energy storage technologies in potential power system operations”, Sustainable Energy Technologies and Assessments, vol. 25, pp. 43–59, 2018. DOI: https://doi.org/10.1016/j.seta.2017.12.001
E. O. Prado, P. C. Bolsi, H. C. Sartori, J. R. Pinheiro, “An Overview about Si, Superjunction, SiC and GaN Power MOSFET Technologies in Power Electronics Applications”, Energies, vol. 15, no. 14, p. 5244, 2022. DOI: https://doi.org/10.3390/en15145244
A.-I. Stan, M. Swierczynski, D.-I. Stroe, R. Teodorescu, S. J. Andreasen, K. Moth, “A comparative study of lithium ion to lead acid batteries for use in UPS applications”, in 2014 IEEE 36th international telecommunications energy conference (INTELEC), pp. 1–8, IEEE, 2014. DOI: https://doi.org/10.1109/INTLEC.2014.6972152
M. Ratshitanga, A. Ayeleso, S. Krishnamurthy, G. Rose, A. A. Aminou Moussavou, M. Adonis, “Battery Storage Use in the Value Chain of Power Systems”, Energies, vol. 17, no. 4, 2024. DOI: https://doi.org/10.3390/en17040921
Eaton Corporation, 9155 UPS, 2013.
WEG Electric Corp., Nobreak Enterprise, 2022.
Legrand Group, Keor SP UPS for offices and IT applications, 2021.
Schneider Electric, SRT10KRMXLT - APC Smart-UPS SRT 10000VA RM 208V, 2021.
Legrand Group, Keor HP Three-phase UPS, 2014.
Phoenix Contact GmbH, QUINT4 - UPS/1AC/1AC/1KVA, 2021.
Schneider Electric, SMT750I - APC Smart-UPS 750VA LCD 230V, 2017.
Voltronic, Compact 1U 1KVA, Voltronic Power Technology Corp, 2022.
Schneider, SRTL3KRM1UNC - APC Smart-UPS 3kVA Lithium-Ion, Schneider Electric, 2023.
Vertiv, Liebert ITA2 UPS, Vertiv Group Corp., 2023.
W. Burgess, Lithium batteries for UPS applications, Eaton, January 2018.
K. W. Beard, Linden’s Handbook of batteries, vol. 5, McGraw-Hill, 2019.
Panasonic, VRLA Handbook, 2021.
P. Ruetschi, “Aging mechanisms and service life of lead–acid batteries”, Journal of Power Sources, vol. 127, no. 1, pp. 33–44, 2004. DOI: https://doi.org/10.1016/j.jpowsour.2003.09.052
T. Waldmann, J. B. Quinn, K. Richter, M. Kasper, A. Tost, A. Klein, M. Wohlfahrt-Mehrens, “Electrochemical, post-mortem, and ARC analysis of Li-ion cell safety in second-life applications”, Journal of The Electrochemical Society, vol. 164, no. 13, p. A3154, 2017. DOI: https://doi.org/10.1149/2.0961713jes
P. Keil, S. F. Schuster, J. Wilhelm, J. Travi, A. Hauser, R. C. Karl, A. Jossen, “Calendar aging of lithium-ion batteries”, Journal of The Electrochemical Society, vol. 163, no. 9, p. A1872, 2016. DOI: https://doi.org/10.1149/2.0411609jes
A. Tomaszewska, Z. Chu, X. Feng, S. O’kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li, L. Liu, et al., “Lithium-ion battery fast charging: A review”, ETransportation, vol. 1, p. 100011, 2019. DOI: https://doi.org/10.1016/j.etran.2019.100011
A. Ulvestad, “A brief review of current lithium ion battery technology and potential solid state battery technologies”, arXiv preprint arXiv:180304317, 2018.
N. Takenaka, A. Bouibes, Y. Yamada, M. Nagaoka, A. Yamada, “Frontiers in theoretical analysis of solid electrolyte interphase formation mechanism”, Advanced Materials, vol. 33, no. 37, p. 2100574, 2021. DOI: https://doi.org/10.1002/adma.202100574
T. Joshi, K. Eom, G. Yushin, T. F. Fuller, “Effects of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries”, Journal of the electrochemical society, vol. 161, no. 12, p. A1915, 2014. DOI: https://doi.org/10.1149/2.0861412jes
PowerTech Systems SAS, PowerBrick+ 12 V Lithium-Ion Battery Pack, 2022.
SOLISE, Batterie 24V 7,2Ah LiFePO4, 2022.
Acumuladores Moura SA, Manual de Instalação e Operação Baterias Estacionárias VRLA, 2021.
WEG SA, Manual do Usuário Baterias VRLA, 2020.
Vision Battery Inc., Important Tips of Using Iron-V LiFePO4 Battery, 2022.
H. Bindner, T. Cronin, P. Lundsager, J. Manwell, U. Abdulwahid, I. Baring-Gould, Lifetime modelling of lead acid batteries, no. 1515(EN) in Denmark. Forskningscenter Risoe. Risoe-R, Forsknings-center Risoe, 2005.
J. Schiffer, D. U. Sauer, H. Bindner, T. Cronin, P. Lundsager, R. Kaiser, “Model prediction for ranking lead-acid batteries according to expected lifetime in renewable energy systems and autonomous power-supply systems”, Journal of Power sources, vol. 168, no. 1, pp. 66–78, 2007. DOI: https://doi.org/10.1016/j.jpowsour.2006.11.092
D. U. Sauer, H. Wenzl, “Comparison of different approaches for life-time prediction of electrochemical systems—Using lead-acid batteries as example”, Journal of Power sources, vol. 176, no. 2, pp. 534–546, 2008. DOI: https://doi.org/10.1016/j.jpowsour.2007.08.057
R. Dufo-López, J. M. Lujano-Rojas, J. L. Bernal-Agustín, “Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems”, Applied Energy, vol. 115, pp. 242–253, 2014. DOI: https://doi.org/10.1016/j.apenergy.2013.11.021
I. A. Azzollini, V. Di Felice, F. Fraboni, L. Cavallucci, M. Breschi, A. Dalla Rosa, G. Zini, “Lead-acid battery modeling over full state of charge and discharge range”, IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6422–6429, 2018. DOI: https://doi.org/10.1109/TPWRS.2018.2850049
C. Burgos, D. Sáez, M. E. Orchard, R. Cárdenas, “Fuzzy modelling for the state-of-charge estimation of lead-acid batteries”, Journal of Power Sources, vol. 274, pp. 355–366, 2015. DOI: https://doi.org/10.1016/j.jpowsour.2014.10.036
F. Sun, R. Xiong, H. He, “A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique”, Applied Energy, vol. 162, pp. 1399–1409, 2016. DOI: https://doi.org/10.1016/j.apenergy.2014.12.021
P. C. Bolsi, E. O. Prado, A. C. C. Lima, H. C. Sartori, J. R. Pinheiro, “Battery autonomy estimation method applied to lead–acid batteries in uninterruptible power supplies”, Journal of Energy Storage, vol. 58, p. 106421, 2023. DOI: https://doi.org/10.1016/j.est.2022.106421
R. Xiong, J. Cao, Q. Yu, H. He, F. Sun, “Critical review on the battery state of charge estimation methods for electric vehicles”, Ieee Access, vol. 6, pp. 1832–1843, 2017. DOI: https://doi.org/10.1109/ACCESS.2017.2780258
S. K. Rahimian, S. Rayman, R. E. White, “State of charge and loss of active material estimation of a lithium ion cell under low earth orbit condition using Kalman filtering approaches”, Journal of the Electrochemical Society, vol. 159, no. 6, p. A860, 2012. DOI: https://doi.org/10.1149/2.098206jes
E. O. Prado, P. C. Bolsi, H. C. Sartori, J. R. Pinheiro, “Comparative Analysis of Modulation Techniques on the Losses and Thermal Limits of Uninterruptible Power Supply Systems”, Micromachines, vol. 13, no. 10, p. 1708, 2022. DOI: https://doi.org/10.3390/mi13101708
E. O. Prado, P. C. Bolsi, H. C. Sartori, J. R. Pinheiro, “Design of Uninterruptible Power Supply Inverters for Different Modulation Techniques Using Pareto Front for Cost and Efficiency Optimization”, Energies, vol. 16, no. 3, p. 1314, 2023. DOI: https://doi.org/10.3390/en16031314
P. C. Bolsi, E. O. Prado, R. J. Nazaré, H. C. Sartori, J. R. Pinheiro, “Simple Method to Estimate Battery Lifetime of Lead-Acid and Lithium-Ion Batteries in Uninterruptible Power Supplies”, in 2023 IEEE 8th Southern Power Electronics Conference and 17th Brazilian Power Electronics Conference (SPEC/COBEP), pp. 1–6, 2023. DOI: https://doi.org/10.1109/SPEC56436.2023.10408219
M. K. Rahmat, A. Z. A. Karim, M. N. M. Salleh, “Sensitivity analysis of the AC uninterruptible power supply (UPS) reliability”, in 2017 International Conference on Engineering Technology and Technopreneurship (ICE2T), pp. 1–6, IEEE, 2017. DOI: https://doi.org/10.1109/ICE2T.2017.8215976
T. M. Layadi, G. Champenois, M. Mostefai, D. Abbes, “Lifetime estimation tool of lead–acid batteries for hybrid power sources design”, Simulation Modelling Practice and Theory, vol. 54, pp. 36–48, 2015. DOI: https://doi.org/10.1016/j.simpat.2015.03.001
Power-Sonic Co., PG-12V9, 2018.
Amara Raja Batteries, HUPS 12V - 160 AH, 2019. DOI: https://doi.org/10.1002/9781118987735.ch6
H. Tian, P. Qin, K. Li, Z. Zhao, “A review of the state of health for lithium-ion batteries: Research status and suggestions”, Journal of Cleaner Production, vol. 261, p. 120813, 2020. DOI: https://doi.org/10.1016/j.jclepro.2020.120813
D.-I. Stroe, M. ´Swierczy´nski, A.-I. Stan, R. Teodorescu, S. J. Andreasen, “Accelerated Lifetime Testing Methodology for Lifetime Estimation of Lithium-Ion Batteries Used in Augmented Wind Power Plants”, IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 4006–4017, 2014. DOI: https://doi.org/10.1109/TIA.2014.2321028
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Pedro C. Bolsi, Edemar O. Prado, Romario J. Nazaré, Hamiltom C. Sartori, José Renes Pinheiro
This work is licensed under a Creative Commons Attribution 4.0 International License.