Grid-Forming Fuel Cell System for an Islanded AC Grid
DOI:
https://doi.org/10.18618/REP.e202457Keywords:
Grid-Forming, Fuel Cell, Voltage-Source Converter, Hardware-in-the-LoopAbstract
This paper proposes a two-stage converter that can black start an isolated AC Microgrid with a Fuel Cell (FC) as the primary energy source. The first stage is connected to the FC and employs a Three-Leg Interleaved Boost DC/DC Converter (IBC), while the second is a Three-Phase Voltage Source Converter (VSC). The DC/DC stage utilizes a Cascade Voltage Control (CVC) to mitigate voltage fluctuations in the DC-link caused by the variability of the FC voltage. For the DC/AC stage, three distinct grid-forming (GFM) strategies are implemented with two of them with multi-loop cascaded structure and one with a single-loop structure. The power circuit of the system is simulated using the Real-Time Simulator (RTS) HIL 602+ from Typhoon-HIL, with the control strategies embedded on the Digital Signal Processor (DSP) TMS320F28379D - F28379D LaunchPad from Texas Instruments (TI). The performance of the cases are verified through CHIL simulations for a balanced and unbalanced inductive load steps. The results demonstrate that for both tests the GFM single loop structure presents smoother transients and shorter recovery times. Additionally, for the unbalanced loads, all the cases present similar results for the DC variables with more pronounced differences at the AC side.
Downloads
References
P. Roy, J. He, T. Zhao, Y. V. Singh, “Recent advances of wind-solar hybrid renewable energy systems for power generation: A review”, IEEE Open Journal of the Industrial Electronics Society, vol. 3, pp. 81–104, January 2022. DOI: https://doi.org/10.1109/OJIES.2022.3144093
M. Kamran, M. R. Fazal, Renewable energy conversion systems, Academic Press, 2021.
M. A. Abdelkareem, K. Elsaid, T. Wilberforce, M. Kamil, E. T. Sayed, A. Olabi, “Environmental aspects of fuel cells: A review”, Science of The Total Environment, vol. 752, p. 141803, August 2021. DOI: https://doi.org/10.1016/j.scitotenv.2020.141803
Z. Ji, J. Qin, K. Cheng, F. Guo, S. Zhang, P. Dong, “Thermodynamics analysis of a turbojet engine integrated with a fuel cell and steam injection for high-speed flight”, Energy, vol. 185, pp. 190–201, July 2019. DOI: https://doi.org/10.1016/j.energy.2019.07.016
A. Arshad, H. M. Ali, A. Habib, M. A. Bashir, M. Jabbal, Y. Yan, “Energy and exergy analysis of fuel cells: A review”, Thermal Science and Engineering Progress, vol. 9, pp. 308–321, December 2018. DOI: https://doi.org/10.1016/j.tsep.2018.12.008
E. J. Dickinson, G. Hinds, “The Butler-Volmer equation for polymer electrolyte membrane fuel cell (PEMFC) electrode kinetics: A critical discussion”, Journal of the electrochemical society, vol. 166, no. 4, p. F221, February 2019. DOI: https://doi.org/10.1149/2.0361904jes
T. Zeng, C. Zhang, A. Zhou, Q. Wu, C. Deng, S. H. Chan, J. Chen, A. M. Foley, “Enhancing reactant mass transfer inside fuel cells to improve dynamic performance via intelligent hydrogen pressure control”, Energy, vol. 230, p. 120620, April 2021. DOI: https://doi.org/10.1016/j.energy.2021.120620
Y. Duan, H. Liu, W. Zhang, L. Khotseng, Q. Xu, H. Su, “Materials, components, assembly and performance of flexible polymer electrolyte membrane fuel cell: A review”, Journal of Power Sources, vol. 555, p. 232369, November 2023. DOI: https://doi.org/10.1016/j.jpowsour.2022.232369
H. S. Das, C. W. Tan, A. Yatim, “Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies”, Renewable and Sustainable Energy Reviews, vol. 76, pp. 268–291, March 2017. DOI: https://doi.org/10.1016/j.rser.2017.03.056
K. Ferguson, A. Dubois, K. Albrecht, R. J. Braun, “High performance protonic ceramic fuel cell systems for distributed power generation”, Energy Conversion and Management, vol. 248, p. 114763, September 2021. DOI: https://doi.org/10.1016/j.enconman.2021.114763
S. Kang, K.-Y. Ahn, “Dynamic modeling of solid oxide fuel cell and engine hybrid system for distributed power generation”, Applied energy, vol. 195, pp. 1086–1099, March 2017. DOI: https://doi.org/10.1016/j.apenergy.2017.03.077
J.-S. Lai, M. W. Ellis, “Fuel cell power systems and applications”, Proceedings of the IEEE, vol. 105, no. 11, pp. 2166–2190, July 2017. DOI: https://doi.org/10.1109/JPROC.2017.2723561
I. Oukkacha, M. B. Camara, B. Dakyo, “Energy Management in Electric Vehicle based on Frequency sharing approach, using Fuel cells, Lithium batteries and Supercapacitors”, in 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), pp. 986–992, IEEE, December 2018. DOI: https://doi.org/10.1109/ICRERA.2018.8566991
D. Guilbert, A. N’Diaye, P. Luberda, A. Djerdir, “Fuel cell lifespan optimization by developing a power switch fault-tolerant control in a floating interleaved boost converter”, Fuel Cells, vol. 17, no. 2, pp. 196–209, July 2016. DOI: https://doi.org/10.1002/fuce.201600058
G. H. Fuzato, C. R. Aguiar, R. F. Bastos, R. Q. Machado, “Evaluation of an interleaved boost converter powered by fuel cells and connected to the grid via voltage source inverter”, IET Power Electronics, vol. 11, no. 10, pp. 1661–1672, July 2018. DOI: https://doi.org/10.1049/iet-pel.2017.0788
D. Ravi, S. S. Letha, P. Samuel, B. M. Reddy, “An overview of various DC-DC converter techniques used for fuel cell based applications”, in 2018 international conference on power energy, environment and intelligent control (PEEIC), pp. 16–21, IEEE, March 2019. DOI: https://doi.org/10.1109/PEEIC.2018.8665465
R. Guo, Q. Li, N. Zhao, “An overview of grid-connected fuel cell system for grid support”, Energy Reports, vol. 8, pp. 884–892, June 2022. DOI: https://doi.org/10.1016/j.egyr.2022.05.211
J. M. de Andrade, M. A. Salvador, R. F. Coelho, T. B. Lazzarin, “Metodologia para derivação de conversores cc-cc elevadores de alto ganho baseados em conexões diferenciais”, Eletrônica de Potência, vol. 29, pp. e202409–e202409, April 2024. DOI: https://doi.org/10.18618/REP.2024.1.0003
T. Tricarico, J. A. Costa, F. A. Alves, M. Aredes, “A New Control Solution Using Fcs-Mpc for a Bidirectional Interleaved Converter Operating as a DC Power-Flow Interface”, Eletrônica de Potência, vol. 27, no. 1, pp. 57–65, March 2022. DOI: https://doi.org/10.18618/REP.2022.1.0041
T. Rahimi, S. H. Hosseini, M. Sabahi, M. Abapour, G. B. Ghareh petian, “Three-phase soft-switching-based interleaved boost converter with high reliability”, IET Power Electronics, vol. 10, no. 3, pp. 377–386, March 2017. DOI: https://doi.org/10.1049/iet-pel.2016.0211
K. L. Shenoy, C. G. Nayak, R. P. Mandi, et al., “Design and implementation of interleaved boost converter”, International Journal of Engineering and Technology (IJET), vol. 9, no. 3S, pp. 496–502, July 2017. DOI: https://doi.org/10.21817/ijet/2017/v9i3/170903S076
X. Quan, Q. Hu, X. Dou, Z. Wu, L. Zhu, W. Li, “Control of grid-forming application for fuel cell/electrolyser system”, IET Renewable Power Generation, vol. 14, no. 17, pp. 3368–3374, February 2020. DOI: https://doi.org/10.1049/iet-rpg.2020.0508
B. Geng, J. K. Mills, D. Sun, “Two-stage energy management control of fuel cell plug-in hybrid electric vehicles considering fuel cell longevity”, IEEE Transactions on vehicular technology, vol. 61, no. 2, pp. 498–508, November 2011. DOI: https://doi.org/10.1109/TVT.2011.2177483
G. K. Andersen, C. Klumpner, S. B. Kjaer, F. Blaabjerg, “A new green power inverter for fuel cells”, in 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat.No. 02CH37289), vol. 2, pp. 727–733, IEEE, November 2002. DOI: https://doi.org/10.1109/PSEC.2002.1022540
J. M. Teixeira do Amaral, J. d. Santos Ramos, C. C. Mendonça de Souza, R. F. da Silva Dias, “Hardware-in-the-loop Assessment of Grid-Forming Inverters for Off-Grid Application of a Fuel Cell System”,in 2023 IEEE 8th Southern Power Electronics Conference and 17th Brazilian Power Electronics Conference (SPEC/COBEP), pp. 1–8, November 2023. DOI: https://doi.org/10.1109/SPEC56436.2023.10408636
W. Du, Z. Chen, K. P. Schneider, R. H. Lasseter, S. P. Nandanoori, F. K. Tuffner, S. Kundu, “A comparative study of two widely used grid-forming droop controls on microgrid small-signal stability”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 2, pp. 963–975, September 2019. DOI: https://doi.org/10.1109/JESTPE.2019.2942491
A. Yazdani, R. Iravani, Voltage-sourced converters in power systems: modeling, control, and applications, John Wiley & Sons, 2010. DOI: https://doi.org/10.1002/9780470551578
F. A. Alves, T. C. Tricarico, D. S. de Oliveira, G. C. Leal, B. W. França, M. Aredes, “A Procedure to Design Damping Virtual Impedance on Grid-Forming Voltage Source Converters with LCL Filters”, Journal of Control, Automation and Electrical Systems, vol. 33, no. 5, pp. 1519– 1536, April 2022. DOI: https://doi.org/10.1007/s40313-022-00917-y
Q.-C. Zhong, Power electronics-enabled autonomous power systems: next generation smart grids, John Wiley & Sons, 2020. DOI: https://doi.org/10.1002/9781118803516
T. Tricarico, G. Gontijo, M. Neves, M. Soares, M. Aredes, J. M. Guerrero, “Control design, stability analysis and experimental validation of new application of an interleaved converter operating as a power interface in hybrid microgrids”, Energies, vol. 12, no. 3, p. 437, January 2019. DOI: https://doi.org/10.3390/en12030437
C. Spiegel, PEM fuel cell modeling and simulation using MATLAB, Elsevier, 2011.
The MathWorks, Inc., MATLAB Release 2021b, 2021, available at: https://www.mathworks.com/help/matlab/.
S. Golestan, J. M. Guerrero, J. C. Vasquez, A. M. Abusorrah, V. Khadkikar, J. Rodriguez, “Control Design of Grid Synchronization Systems for Grid-tied Power Converters Using Symmetrical Optimum Method: A Comprehensive Reference”, IEEE Transactions on Power Electronics, July 2023. DOI: https://doi.org/10.1109/TPEL.2023.3292306
J. Rocabert, A. Luna, F. Blaabjerg, P. Rodriguez, “Control of power converters in AC microgrids”, IEEE transactions on power electronics, vol. 27, no. 11, pp. 4734–4749, May 2012. DOI: https://doi.org/10.1109/TPEL.2012.2199334
L. do Nascimento Gomes, A. J. G. Abrantes-Ferreira, R. F. da Silva Dias, L. G. B. Rolim, “Synchronverter-based statcom with voltage imbalance compensation functionality”, IEEE Transactions on Industrial Electronics, vol. 69, no. 5, pp. 4836–4844, May 2021. DOI: https://doi.org/10.1109/TIE.2021.3080215
R. Rosso, J. Cassoli, G. Buticchi, S. Engelken, M. Liserre, “Robust stability analysis of LCL filter based synchronverter under different grid conditions”, IEEE Transactions on Power Electronics, vol. 34, no. 6, pp. 5842–5853, August 2018. DOI: https://doi.org/10.1109/TPEL.2018.2867040
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 João M. T. do Amaral, Janito S. Ramos, Carolina C. M. de Souza, Giulia J. da Silva, Emanuel L. van Emmerik, Robson F. S. Dias
This work is licensed under a Creative Commons Attribution 4.0 International License.