Advanced Microgrid: Containerized Development Platform
DOI:
https://doi.org/10.18618/REP.e202502Keywords:
Advanced microgrid, container, distributed energy resource, flexible controlAbstract
This paper presents a containerized development platform suitable for developing and validating advanced microgrids (MGs). Through a collaborative effort involving the Federal University of Minas Gerais (UFMG) within the technical-scientific research project titled Minirrede Oasis-UFMG and the State and Federal government, the Tesla containerized MG emerges as a physical simulation tool on advanced MG projects in both islanded and grid-connected operating modes. Installed at the Tesla Laboratory located in the UFMG School of Engineering, Brazil, Tesla MG is composed of (i) eleven distributed energy resources (DERs), which supply around 33 kW; (ii) one single-phase gas-driven synchronous generator (SG), with a power rating of 11 kW; (iii) one 7.5 kW three-phase diesel-driven SG; and (iv) 30 kVA 4-quadrant programmable AC load and source. All these devices are commercially available off-the-shelf equipment. Photovoltaic modules and different battery technologies are installed outside and inside the container, respectively, with cabling extending to the container to connect these components to the inverters. Hardware-in-the-loop (HIL) platforms for real-time simulations (i.e., Opal RT OP5700 and Typhoon HILs 402 and 604) are also available to support MG research. Experimental results are provided to demonstrate the capabilities of the Tesla MG, specifically focusing on inverter features, power dispatchability in grid-connected mode, and proper operation in islanded mode.
Downloads
References
D. Ton, J. Reilly, “Microgrid Controller Initiatives: An Overview of R&D by the U.S. Department of Energy”, IEEE Power Energy Mag, vol. 15, no. 4, pp. 24–31, 2017. DOI: https://doi.org/10.1109/MPE.2017.2691238
D. I. Brandao, L. S. Araujo, A. M. S. Alonso, G. L. dos Reis, E. V. Liberado, F. P. Marafão, “Coordinated Control of Distributed Three- and Single-Phase Inverters Connected to Three-Phase Three- Wire Microgrids”, IEEE J Emerg Sel Topics Power Electron, vol. 8, no. 4, pp. 3861–3877, 2020. DOI: https://doi.org/10.1109/JESTPE.2019.2931122
IEEE, “IEEE Standard for the Specification of Microgrid Controllers”, IEEE Std 20307-2017, pp. 1–43, 2018.
UFMG, “Oasis - UFMG Sustentável”, in online address, 2023, URL: https://www.ufmg.br/sustentabilidade/projetos/oasis/.
N. Andreadou, I. Papaioannou, A. Marinopoulos, M. Barboni, “Smart Grid Laboratories Inventory 2022”, Publications Office of the European Union, 2022.
L. H. L. Rosa, N. Kagan, C. F. M. Almeida, J. Labronici, S. X. Duarte, R. F. Morais, M. R. Gouvea, D. Mollica, A. Dominice, L. Zamboni, G. H. Batista, J. P. Silva, L. A. Costa, M. A. P. Fredes, “A Laboratory infrastructure to support utilities in attaining power quality and Smart Grid goals”, in ICHQP, pp. 312–317, 2016. DOI: https://doi.org/10.1109/ICHQP.2016.7783348
J. I. Y. Ota, J. A. Pomilio, “LabREI: Ambiente experimental para pesquisas interdisciplinares e formação de recursos humanos em redes inteligentes de energia elétrica”, SBSE, vol. 1, no. 1, 2021.
M. S. Ortmann, V. Maryama, L. J. Camurça, L. C. Gili, D. L. Suarez-Solano, D. Dantas, G. Finamor, V. L. da Silva, L. Munaretto, A. Ruseler, A. G. Andreta, R. F. Coelho, M. L. Heldwein, “Architecture, components and operation of an experimental hybrid ac/dc smart microgrid”, in PEDG, pp. 1–8, 2017, doi:10.1109/PEDG.2017.7972564. DOI: https://doi.org/10.1109/PEDG.2017.7972564
UFSM, “Instituto de Redes Inteligentes - INRI”, in online address, 2023, URL: inriufsm.com.br/.
UFMA, “Lab. Microrredes”, in online address, 2023, URL: portalpadrao.ufma.br/iee/labs/lab-microrredes.
UFU, “Laboratório de Redes Inteligentes - LRI”, in online address, 2023, URL: lri.ufu.br/unidades/laboratorio-de-redes-inteligentes.
B. P. B. Guimaraes, R. F. Ribeiro Junior, M. V. Andrade, I. A. dos Santos Areias, J. G. L. Foster, E. L. Bonaldi, F. d. O. Assuncao, L. E. d. L. de Oliveira, F. M. Steiner, Y. El-Heri, “The Development of a Reduced-Scale Laboratory for the Study of Solutions for Microgrids”, Energies, vol. 17, no. 3, 2024. DOI: https://doi.org/10.3390/en17030609
E. Hossain, E. Kabalci, R. Bayindir, R. Perez, “Microgrid testbeds around the world: State of art”, Energy Conversion and Management, vol. 86, pp. 132–153, 2014. DOI: https://doi.org/10.1016/j.enconman.2014.05.012
C. W. Foster, E. A. M. Creeden, S. F. Slocum, F. Yang, “University Microgrid Testbeds: A Literature Survey”, in ICECET, pp. 1–6, 2022. DOI: https://doi.org/10.1109/ICECET55527.2022.9872989
E. Nasr-Azadani, P. Su, W. Zheng, J. Rajda, C. Canizares, M. Kazerani, E. Veneman, S. Cress, M. Wittemund, M. R. Manjunath, N. Wrathall, M. Carter, “The Canadian Renewable Energy Laboratory: A testbed for microgrids”, IEEE Electrification Mag, vol. 8, no. 1, pp. 49–60, 2020. DOI: https://doi.org/10.1109/MELE.2019.2962889
M. Restrepo, C. A. Canizares, J. W. Simpson-Porco, P. Su, J. Taruc, “Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility”, Applied Energy, vol. 290, p. 116760, 2021. DOI: https://doi.org/10.1016/j.apenergy.2021.116760
M. Z. C. Wanik, “Development of microgrid testbed for real desert environment testing and evaluation: project experience”, IET Conference Proceedings, pp. 295–301(6), January 2023. DOI: https://doi.org/10.1049/icp.2023.2751
M. Mansoor, M. Stadler, H. Auer, M. Zellinger, “Advanced optimal planning for microgrid technologies including hydrogen and mobility at a real microgrid testbed”, International Journal of Hydrogen Energy, vol. 46, no. 37, pp. 19285–19302, 2021. DOI: https://doi.org/10.1016/j.ijhydene.2021.03.110
T. O. Ajewole, O. E. Olabode, O. S. Babalola, M. O. Omoigui, “Use of experimental test systems in the application of electric microgrid technology across the sub-Saharan Africa: A review”, Scientific African, vol. 8, p. e00435, 2020. DOI: https://doi.org/10.1016/j.sciaf.2020.e00435
L. Richard, C. Boudinet, S. A. Ranaivoson, J. O. Rabarivao, A. E. Befeno, D. Frey, M.-C. Alvarez-Herault, B. Raison, N. Saincy, “Development of a DC Microgrid with Decentralized Production and Storage: From the Lab to Field Deployment in Rural Africa”, Energies, vol. 15, no. 18, 2022. DOI: https://doi.org/10.3390/en15186727
A. Alahmed, M. AlMuhaini, “Microgrid Testbed With Hybrid Renewables, Energy Storage, and Controllable Loads”, Arabian Journal for Science and Engineering, p. 5965–5977, 2023. DOI: https://doi.org/10.1007/s13369-022-07152-2
A. Cagnano, E. De Tuglie, P. Mancarella, “Microgrids: Overview and guidelines for practical implementations and operation”, Applied Energy, vol. 258, p. 114039, 2020. DOI: https://doi.org/10.1016/j.apenergy.2019.114039
S. Janko, S. Atkinson, N. Johnson, “Design and Fabrication of a Containerized Micro-Grid for Disaster Relief and Off-Grid Applications”, IDETC/CIE, 08 2016. DOI: https://doi.org/10.1115/DETC2016-60296
B. Zhao, X. Zhang, J. Chen, “Integrated Microgrid Laboratory System”, IEEE Trans Power Syst, vol. 27, no. 4, pp. 2175–2185, 2012. DOI: https://doi.org/10.1109/TPWRS.2012.2192140
A. N. Akpolat, Y. Yang, F. Blaabjerg, E. Dursun, A. E. Kuzucuoglu, “Design Implementation and Operation of an Education Laboratory-Scale Microgrid”, IEEE Access, vol. 9, pp. 57949–57966, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3072899
M. Kermani, B. Adelmanesh, E. Shirdare, C. A. Sima, D. L. Carnı, L. Martirano, “Intelligent energy management based on SCADA system in a real Microgrid for smart building applications”, Renewable Energy, vol. 171, pp. 1115–1127, 2021. DOI: https://doi.org/10.1016/j.renene.2021.03.008
A. Elhaffar, N. Tarhuni, A. Al-Hinai, “Micro-Grid Educational Laboratory Modernization using IEDs”, in IEEE EDUCON, pp. 1443–1447. DOI: https://doi.org/10.1109/EDUCON52537.2022.9766474
M. Beus, L. Herencic, H. Pandzic, I. Rajsl, “Laboratory Setup for Stability and Optimization Studies of Hybrid Microgrids”, in 2022 7th SpliTech, pp. 1–6, 2022. DOI: https://doi.org/10.23919/SpliTech55088.2022.9854327
L. Martirano, M. Kermani, F. Manzo, A. Bayatmakoo, U. Graselli, “Implementation of SCADA Systems for a Real Microgrid Lab Testbed”, in 2019 IEEE Milan PowerTech, pp. 1–6, 2019. DOI: https://doi.org/10.1109/PTC.2019.8810795
J. M. S. Callegari, D. I. Brandao, L. G. Monteiro Oliveira, S. M. Silva, B. J. Cardoso Filho, “Container-Mounted Advanced Microgrid”, in IEEE SPEC/COBEP, pp. 1–6, 2023. DOI: https://doi.org/10.1109/SPEC56436.2023.10408010
T. Caldognetto, S. Buso, P. Tenti, D. I. Brandao, “Power-Based Control of Low-Voltage Microgrids”, IEEE J Emerg Sel Topics Power Electron, vol. 3, no. 4, pp. 1056–1066, 2015. DOI: https://doi.org/10.1109/JESTPE.2015.2413361
J. M. S. Callegari, D. I. Brandao, E. Tedeschi, “Selective PQD Power Control Strategy for Single-Phase Grid-Following Inverters”, IEEE J Emerg Sel Topics Power Electron, pp. 1–1, 2023.
J. M. S. Callegari, W. F. Souza, D. I. Brandao, T. R. Oliveira, B. J. C. Filho, “The UFMG Microgrid Laboratory: A testbed for advanced microgrids”, Eletrônica de Potência, vol. 28, pp. 1–11, 2023. DOI: https://doi.org/10.18618/REP.2023.2.0043
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 João Marcus S. Callegari, Danilo Iglesias Brandao, Luís Guilherme Monteiro Oliveira, Sidelmo Magalhães Silva, Braz J. Cardoso Filho
This work is licensed under a Creative Commons Attribution 4.0 International License.