Methodology for Fault Detection Applied in Photovoltaic Plants Based on Inverter Power Curve Analysis
DOI:
https://doi.org/10.18618/REP.e202504Keywords:
Photovoltaic inverters, irradiance, power, energy loss, fault detectionAbstract
The maintenance of photovoltaic plants is crucial to ensure their proper performance, longevity, and efficiency, while also enhancing the return on investment and contributing to sustainable energy production. In such context, this paper proposes a methodology to characterize the main issues in photovoltaic plants, based on the analysis of the proposed inverter output power curve. Through power curve analysis, the most common anomalies and faults encountered in inverters are identified, providing a valuable tool for the early detection of operational issues. Additionally, power curve analysis allows a comparison between projected and actual values of generated energy, offering an index of system energy losses. Lastly, an economic analysis is presented, ranking inverters based on the magnitude of their energy losses, from highest to lowest. This analysis provides important insights for prioritizing maintenance actions and allocating resources to enhance generation returns.
Downloads
References
L. S. Paraschiv, S. Paraschiv, “Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development”, Energy Reports, vol. 9, pp. 535–544, 2023. DOI: https://doi.org/10.1016/j.egyr.2023.07.024
P. Choudhary, R. K. Srivastava, “Sustainability perspectives- a review for solar photovoltaic trends and growth opportunities”, Journal of Cleaner Production, vol. 227, pp. 589–612, 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.04.107
A. Aleksandra, B. P. Sara, J. Małgorzata, B. Brian, P. Davide, C. Miguel, “Role of solar PV in net-zero growth: An analysis of international manufacturers and policies”, Progress in Photovoltaics: Research and Applications.
A. Baklouti, L. Mifdal, S. Dellagi, A. Chelbi, “An Optimal Preventive Maintenance Policy for a Solar Photovoltaic System”, Sustainability, vol. 12, no. 10, 2020. DOI: https://doi.org/10.3390/su12104266
K. Keisang, T. Bader, R. Samikannu, “Review of Operation and Maintenance Methodologies for Solar Photovoltaic Microgrids”, Frontiers in Energy Research, vol. 9, 2021. DOI: https://doi.org/10.3389/fenrg.2021.730230
R. C. de Barros, W. C. S. Amorim, W. d. C. Boaventura, A. F. Cupertino, V. F. Mendes, H. A. Pereira, “Methodology for BESS Design Assisted by Choice Matrix Approach”, Eletrônica de Potência, vol. 29, p. e202412, Jun. 2024. DOI: https://doi.org/10.18618/REP.2005.1.019027
K. Ribeiro, R. Santos, E. Saraiva, R. Rajagopal, “A Statistical Methodology to Estimate Soiling Losses on Photovoltaic Solar Plants”, Journal of Solar Energy Engineering, vol. 143, no. 6, p. 064501, 05 2021, doi:10.1115/1.4050948. DOI: https://doi.org/10.1115/1.4050948
N. AL-Rousan, N. A. M. Isa, M. K. M. Desa, “Advances in solar photovoltaic tracking systems: A review”, Renewable and Sustainable Energy Reviews, vol. 82, pp. 2548–2569, 2018. DOI: https://doi.org/10.1016/j.rser.2017.09.077
A. Cabrera-Tobar, E. Bullich-Massague, M. Aragues-Penalba,O. Gomis-Bellmunt, “Topologies for large scale photovoltaic power plants”, Renewable and Sustainable Energy Reviews, vol. 59, pp. 309–319, 2016. DOI: https://doi.org/10.1016/j.rser.2015.12.362
M. Boyd, “NIST Weather Station for Photovoltaic and Building System Research”, , 03 2016, doi:10.6028/NIST.TN.1913. DOI: https://doi.org/10.6028/NIST.TN.1913
S. Ansari, A. Ayob, M. S. H. Lipu, M. H. M. Saad, A. Hussain, “A Review of Monitoring Technologies for Solar PV Systems Using Data Processing Modules and Transmission Protocols: Progress, Challenges and Prospects”, Sustainability, vol. 13, no. 15, 2021. DOI: https://doi.org/10.3390/su13158120
Q. Liu, Y. Zhao, Y. Zhang, D. Kang, Q. Lv, L. Shang, “Hierarchical context-aware anomaly diagnosis in large-scale PV systems using SCADA data”, in 2017 IEEE 15th International Conference on Industrial Informatics, pp. 1025–1030, 2017. DOI: https://doi.org/10.1109/INDIN.2017.8104914
S. Baschel, E. Koubli, J. Roy, R. Gottschalg, “Impact of Component Reliability on Large Scale Photovoltaic Systems’ Performance”, Energies, vol. 11, no. 6, 2018. DOI: https://doi.org/10.3390/en11061579
U. Jahn, W. Nasse, “Operational performance of grid-connected PV systems on buildings in Germany”, Progress in Photovoltaics: Research and Applications, vol. 12, no. 6, pp. 441–448, 2004. DOI: https://doi.org/10.1002/pip.550
S. Gallardo-Saavedra, L. Hernandez-Callejo, O. Duque-Perez, “Technological review of the instrumentation used in aerial thermographic inspection of photovoltaic plants”, Renewable and Sustainable Energy Reviews, vol. 93, pp. 566–579, 2018. DOI: https://doi.org/10.1016/j.rser.2018.05.027
M. Villarini, V. Cesarotti, L. Alfonsi, V. Introna, “Optimization of photovoltaic maintenance plan by means of a FMEA approach based on real data”, Energy Conversion and Management, vol. 152, pp. 1–12, 2017. DOI: https://doi.org/10.1016/j.enconman.2017.08.090
A. Betti, M. L. L. Trovato, F. S. Leonardi, G. Leotta, F. Ruffini, C. Lanzetta, “Predictive Maintenance in Photovoltaic Plants with a Big Data Approach”, CoRR, vol. abs/1901.10855, 2019, 1901.10855.
V. Smet, F. Forest, J.-J. Huselstein, F. Richardeau, Z. Khatir, S. Lefebvre, M. Berkani, “Ageing and Failure Modes of IGBT Modules in High-Temperature Power Cycling”, IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4931–4941, 2011. DOI: https://doi.org/10.1109/TIE.2011.2114313
M. Kontges, S. Kurtz, C. Packard, U. Jahn, K. Berger, K. Kato, ¨ T. Friesen, H. Liu, M. Van Iseghem, j. Wohlgemuth, D. Miller, M. Kempe, P. Hacke, F. Reil, N. Bogdanski, W. Herrmann, C. Buerhop, G. Razongles, G. Friesen, Review of Failures of Photovoltaic Modules, International Energy Agency, 2014, URL: https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS T13- 01 2014 Review of Failures of Photovoltaic Modules Final.pdf.
Y. Wang, Q. Hu, L. Li, A. M. Foley, D. Srinivasan, “Approaches to wind power curve modeling: A review and discussion”, Renewable and Sustainable Energy Reviews, vol. 116, p. 109422, 2019. DOI: https://doi.org/10.1016/j.rser.2019.109422
P. Marti-Puig, J. Hernandez, J. Sol ´ e-Casals, M. Serra-Serra, “Enhancing Reliability in Wind Turbine Power Curve Estimation”, Appl Sci, vol. 14, p. 2479, 2024. DOI: https://doi.org/10.3390/app14062479
F. Bilendo, A. Meyer, H. Badihi, N. Lu, P. Cambron, B. Jiang, “Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review”, Energies, vol. 16, p. 180, 2023. DOI: https://doi.org/10.3390/en16010180
PVsyst SA, “PVsyst, commercial photovoltaic system simulation software”, https://www.pvsyst.com/, [Accessed on 24 January 2024].
The Solar Design Company, “PV*Sol, commercial photovoltaic system simulation software”, https://pvsol.software/en/, [Accessed on 24 January 2024].
International Electrotechnical Commission (IEC), Photovoltaic System Performance – Part 1: Monitoring, Part 2: Capacity Evaluation Method, Part 3: Energy Evaluation Method, IEC 61724-1:2021, IEC 61724-2:2017, IEC 61724-3:2017, 2021.
P. A. Morettin, J. da Motta Singer, Estatística e Ciência de Dados , 1 ed., Editora LTC, Sao Paulo, 2022. ˜
R. H. French, L. S. Bruckman, D. Moser, S. Lindig, M. van Iseghem, B. Muller, J. S. Stein, M. Richter, M. Herz, W. V. Sark, ¨ F. Baumgartner, Assessment of Performance Loss Rate of PV Power Systems, International Energy Agency, Photovoltaic Power Systems Programme (IEA PVPS), 2021, URL: https://iea-pvps.org/wpcontent/uploads/2021/04/IEA-PVPS-T13-22 2021-Assessment-ofPerformance-Loss-Rate-of-PV-Power-Systems-report.pdf.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Paulo A. V. Vieira, João M. S. Callegari, Heverton Augusto Pereira
This work is licensed under a Creative Commons Attribution 4.0 International License.