Challenges in Microgrids with Medium Voltage Circuit
DOI:
https://doi.org/10.18618/REP.e202511Keywords:
microgrid, medium voltage, ferroresonance, ungrounded systemAbstract
This paper presents and discusses challenges in microgrids (uGrid) that arise when they operate isolated from the main grid. Specifically, these challenges occur because the system becomes an ungrounded delta configuration, and the microgrid power sources exhibit low short-circuit capacity. The important issues addressed include the failure to detect ground overcurrent during an earth fault event, voltage imbalances recorded by voltage transformers (VTs) connected between phases and earth, and the phenomenon of ferroresonance. These issues directly impact the coordination of electrical protection, component integrity, and synchronization checks between different power sources within the uGrid. Therefore, the Energy Management System (EMS) is tasked with managing protection devices and systematically responding to minimize disruptions, thereby ensuring operational security. This paper examines the protection functions within devices for both operational modes (on-grid and off-grid) and the corresponding decisions implemented as rules within the EMS. Effective coordination between protection devices and management systems ensures a rapid and selective response to faults, thereby enhancing microgrid security and facilitating efficient problem detection and resolution.
Downloads
References
H. Farhangi, "The path of the smart grid," IEEE power and energy magazine, vol. 8, pp. 18-28, 2009, doi: 10.1109/MPE.2009.934876 DOI: https://doi.org/10.1109/MPE.2009.934876
A. Muhtadi, D. Pandit, N. Nguyen and J. Mitra, "Distributed energy resources based microgrid: Review of architecture, control, and reliability," IEEE Transactions on Industry Applications, pp. 2223-2235, 2021, doi: 10.1109/TIA.2021.3065329 DOI: https://doi.org/10.1109/TIA.2021.3065329
K. dos Santos, L. Santos, N. Bañol, J. C. López, M. J. Rider and L. C. d. and Silva, "Optimal Sizing and Allocation of Distributed Energy Resources in Microgrids Considering Internal Network Reinforcements," Journal of Control, Automation and Electrical Systems, pp. 106-119, 2023, doi: 10.1007/s40313-022-00934-x DOI: https://doi.org/10.1007/s40313-022-00934-x
S. Ahmad, M. Shafiullah, C. B. Ahmed and M. Alowaifeer, "A Review of Microgrid Energy Management and Control Strategies," IEEE Access, 2023, doi: 10.1109/ACCESS.2023.3248511 DOI: https://doi.org/10.1109/ACCESS.2023.3248511
Y. Wu, J. M. Guerrero, Y. Wu, N. Bazmohammadi, J. C. Vasquez, A. J. Cabrera and N. Lu, "Digital Twins for Microgrids: Opening a New Dimension in the Power System," IEEE Power and Energy Magazine, vol. 22, pp. 35--42, 2024, doi: 10.1109/MPE.2023.3324296 DOI: https://doi.org/10.1109/MPE.2023.3324296
H. A. Oliveira, J. G. De Matos, L. A. d. S. Ribeiro, O. R. Saavedra, A. d. A. Lorençato, A. S. Martins and L. d. P. A. Pinheiro, "Smooth Integration of Rectifier-Battery Banks Operation in Real-Life Isolated Microgrids Based on Renewable Sources: Theory and Application," IEEE TRANSACTIONS ON SMART GRID, pp. 3383-3393, 5 September 2022, doi: 10.1109/TSG.2022.3171447 DOI: https://doi.org/10.1109/TSG.2022.3171447
S. Tan, Y. Wu, P. Xie, J. M. Guerrero, J. C. Vasquez and A. Abusorrah, "New Challenges in the Design of Microgrid Systems: Communication Networks, Cyberattacks, and Resilience," IEEE Electrification Magazine, pp. 98-106, 2020, doi: 10.1109/MELE.2020.3026496 DOI: https://doi.org/10.1109/MELE.2020.3026496
R. O. d. Sousa, A. F. Cupertino, L. M. F. Morais, H. A. Pereira and R. Teodorescu, "“Experimental Validation and Reliability Analyses of Minimum Voltage Control in Modular Multilevel Converter-Based STATCOM," IEEE Transactions on Industrial Electronics, pp. 1-10, 2023, doi: 10.1109/TIE.2023.3303634 DOI: https://doi.org/10.1109/TIE.2023.3303634
D. T. Ton and M. A. Smith, "The US department of energy's microgrid initiative," The Electricity Journal, vol. 25, pp. 84-94, 2012, doi: 10.1016/j.tej.2012.09.013 DOI: https://doi.org/10.1016/j.tej.2012.09.013
N. Hatziargyriou, Microgrids: architectures and control, John Wiley & Sons, 2014.
J. D. L. Cruz, Y. Wu, J. E. Candelo-Becerra, J. C. Vásquez and J. M. Guerrero., "A review of networked microgrid protection: Architectures, challenges, solutions, and future trends," CSEE Journal of Power and Energy Systems, 2023, doi: 10.17775/CSEEJPES.2022.07980 DOI: https://doi.org/10.17775/CSEEJPES.2022.07980
S. L. Aleksandar Vukojevic, "Microgrid protection and control schemes for seamless transition to island and grid synchronization," IEEE Transactions on Smart Grid, vol. 11, pp. 2845--2855, 2020, doi: 10.1109/TSG.2020.2975850 DOI: https://doi.org/10.1109/TSG.2020.2975850
P. Ferracci, "Ferroresonance," in Collection Technique, Groupe Schneider, 1998, pp. 1-30.
P. Singh, U. Kumar, N. K. Choudhary and N. Singh, "Advancements in Protection Coordination of Microgrids: a Comprehensive Review of Protection Challenges and Mitigation Schemes for Grid Stability," Protection and Control of Modern Power Systems, vol. 9, pp. 156-183. DOI: https://doi.org/10.23919/PCMP.2023.000250
C.-N. a. L. J. J. a. C. Y.-C. Huang, "A method for exploring the interdependencies and importance of critical infrastructures," Knowledge-Based Systems, vol. 55, pp. 66-74, doi: 10.1016/j.knosys.2013.10.010 DOI: https://doi.org/10.1016/j.knosys.2013.10.010
J. W. a. X. Lu, "Sustainable and Resilient Distribution Systems With Networked Microgrids [Point of View]," Proceedings of the IEEE, vol. 108, pp. 238-241, doi: 10.1109/JPROC.2019.2963605 DOI: https://doi.org/10.1109/JPROC.2019.2963605
H. Oliveira, L. H. S. Santos, J. G. De Matos, L. A. d. S. Ribeiro, A. C. Oliveira and J. V. M. Caracas, "Challenges in Medium Voltage Microgrids Case Study: Alcântara Launch Center," in IEEE 8th Southern Power Electronics Conference and 17th Brazilian Power Electronics Conference (SPEC/COBEP), Florianopolis, Brazil, 2023, doi: 10.1109/SPEC56436.2023.10408472 DOI: https://doi.org/10.1109/SPEC56436.2023.10408472
C. A. S. e. a. Castelo Branco, "Mission Critical Microgrids: The Case of the Alcântara Space Center," Energies, vol. 15, p. 3226, 2022, doi: 10.3390/en15093226 DOI: https://doi.org/10.3390/en15093226
International Electrotechnical Commission (IEC). International Standard 186., Voltage transformers, 1987.
Arcol, "https://www.ohmite.com/assets/docs/acl_ap101.pdf," Arcol. [Online]. [Accessed 8 11 2023].
American National Standards Institute (ANSI), IEEE Standard for Electrical Power System Device Function Numbers, Acronyms, and Contact Designations. C37.2., New York: IEEE, 2008.
IEEE STANDARDS ASSOCIATION, IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE Std 1547-2018, New York: IEEE, 2018.
G. Kindermann, Proteção de Sistemas Elétricos de Potêncnia, Florianópolis: Ed. do Autor, 1999.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hércules A. Oliveira, Luiza H. S. Santos, Luiz A. de S. Ribeiro, José G. de Matos, Lucas de P. A. Pinheiro

This work is licensed under a Creative Commons Attribution 4.0 International License.